Copper-Zinc Superoxide Dismutase (CuZn-SOD) Electrochemical Catalytic Amplification Sensing at Pt Ultramicroelectrodes

Authors

  • Annelis O. Sánchez-Álvarez University of Puerto Rico, Río Piedras Campus
  • J. Andres Melendez SUNY Polytechnic Institute
  • Mariena Silvestry-Ramos Cornell University
  • Carlos R. Cabrera University of Texas at El Paso

DOI:

https://doi.org/10.29356/jmcs.v67i4.1963

Keywords:

Electrochemical catalytic amplification, copper zinc superoxide dismutase (CuZnSOD), metalloproteins, Pt ultramicroelectrodes

Abstract

Abstract. Copper/zinc superoxide dismutase (CuZnSOD), a 32.5 kDa metalloprotein with a radius of ca. 2.1 nm, catalyses the superoxide to hydrogen peroxide and molecular oxygen. At the femtomolar concentration range, has been sensed through electrochemical catalytic amplification using a Pt ultramicroelectrode. During amperometric (i vs. t) analysis, cathodic and anodic current transitions peaks were seen, in agreement with the metalloprotein catalytic mechanism. The current amplitudes were analyzed and correspond to the CuZnSOD dimensions. Thermal treatment of metalloprotein samples at 80 °C showed larger current spikes suggesting aggregation without losing its catalytic capability. The size was confirmed by transmission electron microscopy.

 

Resumen. Cuprozinc superóxido dismutasa (CuZnSOD), es una metaloproteina de 32.5 kDa con un radio de aproximadamente 2.1 nm. Esta enzima cataliza la reacción de superóxido a peróxido y oxígeno molecular. Por primera vez, esta proteína es detectada a concentraciones femtomolares haciendo uso de la técnica electroquímica conocida como amplificación catalítica y la tecnología de ultra-microelectrodos de Pt. Durante un análisis amperométrico (curvas i vs. t), se observaron picos transitorios de corriente catódica y anódica que concuerdan con el mecanismo catalítico de la enzima. Al analizar la amplitud de la corriente, la misma concuerda con las dimensiones de CuZnSOD. Luego de exponer la proteína a un tratamiento térmico de 80 °C, CuZnSOD mostró picos de corriente transitorias que sugieren aglomeración de la enzima sin perder su capacidad catalítica. El tamaño fue confirmado por microscopía electrónica de transmisión.

Downloads

Download data is not yet available.

Author Biographies

Annelis O. Sánchez-Álvarez, University of Puerto Rico, Río Piedras Campus

Department of Chemistry

College of Nanoscale Science and Engineering, SUNY Polytechnic Institute

University of Puerto Rico Comprehensive Cancer Center

J. Andres Melendez, SUNY Polytechnic Institute

College of Nanoscale Science and Engineering, SUNY Polytechnic Institute

Mariena Silvestry-Ramos, Cornell University

Cornell Center for Material Research, Cornell University

Carlos R. Cabrera, University of Texas at El Paso

Professor and Chair, Department of Chemistry and Biochemistry

References

Rosa, A. C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Molecules. 2021, 26, 1844. DOI: 10.3390/molecules26071844 PubMed.

Ge, B.; Scheller, F. W.; Lisdat, F. Biosens. Bioelectron. 2003, 18, 295-302. DOI: 10.1016/s0956-5663(02)00174-4 PubMed.

Bakavayev, S.; Chetrit, N.; Zvagelsky, T.; Mansour, R.; Vyazmensky, M.; Barak, Z.; Israelson, A.; Engel, S. Sci. Rep. 2019, 9, 10826. DOI: 10.1038/s41598-019-47326-x.

Candas, D.; Li, J. J. Antioxid. Redox Signal 2014, 20, 1599-1617. DOI: 10.1089/ars.2013.5305 PubMed.

Yan, Z.; Spaulding, H. R. Redox Biol. 2020, 32, 101508. DOI: https://doi.org/10.1016/j.redox.2020.101508.

(Powers, K. M.; Oberley, L. W.; Domann, F. E. The Adventures of Superoxide Dismutase in Health and Disease: Superoxide in the Balance. In Oxidants in Biology: A Question of Balance, Valacchi, G., Davis, P. A. Eds.; Springer Netherlands, 2008; 183-201.

Altobelli, G. G.; Van Noorden, S.; Balato, A.; Cimini, V. C. Front. Med. 2020, 7 (183). DOI: 10.3389/fmed.2020.00183.

Toh, Y.; Kuninaka, S.; Oshiro, T.; Ikeda, Y.; Nakashima, H.; Baba, H.; Kohnoe, S.; Okamura, T.; Mori, M.; Sugimachi, K. Int. J. Oncol. 2000, 17, 107-112. DOI: 10.3892/ijo.17.1.107 From NLM.

Nadine, H.; Pauline, M. C.; Melendez, J. A. Anti-Cancer Agents Med. Chem. 2011, 11, 191-201. DOI: http://dx.doi.org/10.2174/187152011795255911.

Chen, P. M.; Wu, T. C.; Shieh, S. H.; Wu, Y. H.; Li, M. C.; Sheu, G. T.; Cheng, Y. W.; Chen, C. Y.; Lee, H. Mol. Cancer Res. 2013, 11, 261-271. DOI: 10.1158/1541-7786.Mcr-12-0527 From NLM.

Dick, J. E.; Hilterbrand, A. T.; Boika, A.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. Sci. U S A 2015, 112, 5303-5308. DOI: 10.1073/pnas.1504294112.PubMed.

Dick, J. E.; Hilterbrand, A. T.; Strawsine, L. M.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. Sci. U S A 2016, 113, 6403-6408. DOI: 10.1073/pnas.1605002113 PubMed.

(Sekretareva, A. Sens. Actuators Rep. 2021, 3, 100037. DOI: https://doi.org/10.1016/j.snr.2021.100037.

Andreescu, S.; Vasilescu, A. Curr. Opin. Electrochem. 2021, 30, 100820. DOI: https://doi.org/10.1016/j.coelec.2021.100820.

Dick, J. E. Chem. Comm. 2016, 52, 10906-10909. DOI: 10.1039/C6CC04515D.

Tian, Y.; Mao, L.; Okajima, T.; Ohsaka, T. Anal. Chem. 2004, 76, 4162-4168. DOI: 10.1021/ac049707k.

Xiao, X.; Bard, A. J. J. Am. Chem. Soc. 2007, 129, 9610-9612. DOI: 10.1021/ja072344w PubMed.

Bard, A. J.; Zhou, H.; Kwon, S. J. Israel J. Chem. 2010, 50, 267-276. DOI: https://doi.org/10.1002/ijch.201000014.

Sekretaryova, A. N.; Vagin, M. Y.; Turner, A. P. F.; Eriksson, M. Electrocatalytic Currents from Single Enzyme Molecules. J. Am. Chem. Soc. 2016, 138, 2504-2507. DOI: 10.1021/jacs.5b13149.

Fan, F. R. F.; Demaille, C. Scanning Electrochemical Microscopy 2012, 75-110. DOI: 10.1201/b11850-4.

Balamurugan, M.; Santharaman, P.; Madasamy, T.; Rajesh, S.; Sethy, N. K.; Bhargava, K.; Kotamraju, S.; Karunakaran, C. Biosens. Bioelectron. 2018, 116, 89-99. DOI: https://doi.org/10.1016/j.bios.2018.05.040.

Jamnongwong, M.; Loubiere, K.; Dietrich, N.; Hébrard, G. Chem. Eng. J. 2010, 165, 758-768. DOI: https://doi.org/10.1016/j.cej.2010.09.040.

Downloads

Additional Files

Published

2023-10-31

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI