Improvement the Physico-chemical Characteristics of Diesel Fuel using Gamma Irradiation

Improvement the Physico-chemical Characteristics of Diesel Fuel: Cracking the organic compounds using Gamma Irradiation


  • M. Ezeldin Osman Peoples’ Friendship University of Russia
  • F. Younis Omdurman Islamic University
  • A. A. Elamin Omdurman Islamic University
  • Y. S. Suliman Omdurman Islamic University
  • T. F. Sheshko Peoples’ Friendship University of Russia
  • N. E. Abdallah Peoples’ Friendship University of Russia
  • A.G. Cherednichenko Peoples’ Friendship University of Russia



Gamma irradiation, distillation, kinematic viscosity, flash point


Abstract. The effect of gamma irradiation on physico-chemical properties of petro-diesel fuel using different rate and absorbed doses has been studied. The diesel fuel samples were exposed to gamma radiation for 1.3 h using different absorbed doses: 3, 6, 10, and 15 kGy, with dose rates 2.27, 4.5, 7.4, and 11.15 kGy/h, respectively. Physico-chemical characteristics of diesel fuel were determined according to the standard test methods assigned by ASTM, characteristics are: cetane number, distillation recovery points, flash point, calorific value, density, and kinematic viscosity. The effect of gamma irradiation doses on organic compounds of diesel fuel was study using GC/MS technique.  Experimental results show that the density, distillation, kinematic viscosity and flash point were decreased at absorbed doses 3, 6 and 15 kGy whereas increases at 10 kGy, corresponding with rate doses. Cetane number of diesel fuel increased after exposure to 3, 6, and 15 kGy but decreased at 10 kGy. These results can be attributed to the broken and formed bonds as a result of the high applied energy. The formed fragments at (10 kGy; 7.5 kGy/h) made a new compounds that have physical parameters affected negatively on the overall properties of diesel fuel. The formed fragments in diesel fuel after exposed to 3, 6, and 15 kGy (2.27, 4.5, and 11.15 kGy/h) have converted some of cyclic, aromatic, and branched organic compounds to linear hydrocarbons, which supported increasing of cetane number to 54. All characteristics have been improved within limits assigned by ASTM.


Resumen. Se estudió el efecto de la irradiación gamma, a diferentes velocidades y dosis adsorbidas, sobre las propiedades físico-químicas del combustible de petróleo diésel. Las muestras de combustible diesel se expusieron a radiación gamma durante 1,3 h utilizando diferentes dosis absorbidas: 3, 6, 10 y 15 kGy, con tasas de dosis de 2,27, 4,5, 7,4 y 11,15 kGy / h, respectivamente. Las características físico-químicas del combustible diesel se determinaron de acuerdo con los métodos de prueba estándar ASTM, las características son: índice de cetano, puntos de recuperación de la destilación, punto de inflamación, poder calorífico, densidad y viscosidad cinemática. Se estudió el efecto de las dosis de irradiación gamma sobre los compuestos orgánicos del combustible diesel mediante la técnica GC / MS. Los resultados experimentales muestran que la densidad, la destilación, la viscosidad cinemática y el punto de inflamación disminuyeron en las dosis absorbidas de 3, 6 y 15 kGy mientras que aumentaron a 10 kGy. El número de cetanos en el combustible diesel aumentó después de la exposición a 3, 6 y 15 kGy, pero disminuyó a 10 kGy. Estos resultados se se taribuyen a enlaces rotos y formados como resultado de la alta energía aplicada. Los fragmentos formados a (10 kGy; 7,5 kGy / h) produjeron nuevos compuestos que tienen parámetros físicos que afectan negativamente a las propiedades generales del combustible diesel. Los fragmentos formados en el combustible diesel después de la exposición a 3, 6 y 15 kGy (2,27, 4,5 y 11,15 kGy / h) convirtieron algunos de los compuestos orgánicos cíclicos, aromáticos y ramificados en hidrocarburos lineales, lo que contribuyó al aumento del índice de cetano a 54. Todas las características se han mejorado dentro de los límites asignados por ASTM.

Author Biography

M. Ezeldin Osman, Peoples’ Friendship University of Russia

N.D. Zelinsky Institute of Organic Chemistry RAS.

Omdurman Islamic University


Barrientos, A.; Ortuño, M.T.; Morales, J.M.; Martinez TeUo, F.; Rodicio, J.L. Arch. Intern. Med. 1977, 137, 1217.

Kwon, Y.; Mann, N.; Rickeard, D.J.; Haugland, R.; Ulvund, K.A.; Kvinge, F.; Wilson, G. SAE. 2001, 01, 3522.

Zannis, T.C.; Hountalas. Energy Fuels. 2004, 18, 659-666.

Zannis, T.C. J. Energy Inst. 2004, 77, 16- 25.

Annual book of ASTM standards. American Society for Testing and Materials. West Conshohocken, Salvter. J. Rand. 2005.

Rakopoulos, C.D.; Hountalas, D.T.; Zannis, T.C.; Levendis, Y.A. SAE. 2004, 1, 2924.

Szybist, J. P.; Boehman, A. L. SAE. 2003, 1, 1039.

Cheng, A.S.; Upatnieks, A.; Mueller, C.J. Int. J. Engine. Res. 2006, 7, 297-318.

Fisher, E. M.; Pitz, W. J.; Curran, H.J.; Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1579-1586.

Nakakita, K.; Ban, H.; Takasu, S.; Hotta, Y.; Inagaki, K.; Weissman, W. SAE. 2003, 1, 1914.

Van Bommel, M .J.; Oonk, H. A. J.; van Miltenberg, J. C. J. Chem. Eng. 2004, 49, 1036-1042.

Rashid, U; F. Anwar. Fuel. 2008, 87, 265-273.

Araújo, M. E.; Meireles, M. A. A. Fluid Phase Equilib. 2000, 169, 49-64.

Zannis, T. C.; Hountalas, D.T.; Papagiannakis, R. G. Energy Fuels. 2007, 21, 2642-2654.

Kidoguchi, Y.; Yang, C.; Kato, R.; Miwa, K. J. SAE Review. 2000, 21, 469-475.

Andrade, L. d. S.; Calvo, W. A. P; Sato, I. P.; Duarte, C. L. Petroleum and diesel sulfur degradation under gamma radiation, Energetic and Nuclear Research Institute (IPEN/CNEN), Av. Lineu Prestes 2242, Butanta, CEP 05508-000 São Paulo–SP, Brazil, 2014.

Tseng, C. C.; Viskanta, R. Combust. Sci. Technol. 2005, 177, 8, 1511-1542.

Duran, A.; Carmona, M.; Monteagudo, J. M. Chemosphere. 2004, 56, 209-225.

Jabbarova, L. Y. High Energy Chem. 2019, 53, 471-477.

Jabbarova, L. Y.; Mustafayev, I. J. Appl. Spectrosc. 2018, 85, 686-690.

Jabbarova, L. Y.; Mustafayev, I. I.; Akberov, R.; Melikova, S. Z.; Akhmedova, T. N. Int. Res. J. Basic Appl. Sci. 2019, 1, 101-107.

Jabbarova, L. Y. Int.J. Appl. Fund. Res. 2019, 4, 72-75.

Jabbarova, L.; Mustafayev, I. J. Energy Environ. Chem. Eng. 2017, 2, 41- 45.

Jabbarova, L. Y.; Mustafayev, I. I.; Malikova, S. Z. Int. J. Appl. Fund. Res. 2017, 7, 239-243.

Jabbarova, L. Y.; Mustafayev, I. J. Energy Environ. Chem. Eng. 2017, 1, 62-66.

Jabbarova, L. Y. Melikova, S. Z.; Aliev, S. M. J. Radiat. Res. 2017, 4, 47-54.

Jabbarova, L. Y. «Influence of radiation on quality of motor fuels, Azerbaijan University of Architecture and Construction. International scientific-technical Conference, 2017, 317.

Eberle, D.; Treuhaft, M.; Tao, X. SAE Paper 2005, 1, 3689. DOI:

Jabbarova, L. Y. Researches of a high-temperature radiolysis of diesel fuel. Proceedings of International Scientific Conference on Sustainable Development Goals. 24-25 November 2017, Baku, Azerbaijan. 152-155.

Jabbarova, L. Y.; Melikova, S. Z.; Aliev, S. M. J. Radiat. Res. 2015, 2, 71-76.

Jabbarova, L. Y.; Mustafaev, I, I.; Nabizade, Z. O.; Rzayev, R. S.; Akhmadbayova, S. F. DOAG.2014, 9, 80-84.

Luana D. S.; Andrade, W. A. P. C.; Ivone, M. S.; Celina, L. D. Radiat. Phys. Chem. 2015, 115, 196-201.

Dianne, L. P.; Jay, C.; Terrence, D.; Andy, M.; DJim, C. Fuel. 2021, 289, 119963.

Osman, M. E.; Sheshko, T. F.; Dipheko, T. D.; Abdallah, N. E.; Hassan, E. A.; Ishak, C. Y. Int. J. Green Energy. 2021, 18, 1396- 1404. DOI: 10.1080/15435075.2021.1904943.

Nivin, C.; Clinton, J.; Premnath, V.; Sajja, S. S.; Thangaraja, J. A. Fuel. 2021, 289, 119918.

Jabbarova, L. Rad. Sci. Tech. 2020, 6, 1-6. DOI: 10.11648/j.rst.20200601.11.

Ezeldin, M.; Elamin, A, A.; Masaad, A. M.; Suleman, N. M.; Osama, A. A. Am. Res. Thoughts. 2015, 1, 2862-2870.

Ezeldin, M.; Masaad, A. M.; Abualreish, M. J. A.; Ishak C. Y. Orient. J. Chem. 2017, 33, 2085-2089.

Ali, O. M.; Abdullah, N. R.; Mamat, R.; Abdullah A. A. Energy Procedia. 2015, 75, 2357–2362.

Jans, A.; Chaineaux, J. Chem. Eng. Trans. 2013, 31, 943-948 /CET 133–1158.

Harvey, D. Modren Analytical Chemistry. Ed. 6, New York, DePauw University, 2000.

Shahabuddin, M.; Masjuki, H. H.; Kalam M. A.; Mofijur, M.; Hazrat, M. A.; Liaquat, A. M. Energy Procedia. 2012, 14, 1624-29.

Pogorevc, P.; Kegl, B.; Skerget, L. Energy Fuels. 2008, 22, 1266-1274.

Sarkar, S. Fuels and Combustion, Ed. 3, University Press, India, 2009.

Ali, O. M.; Mamat, R.; Faizal, C. K. M. J. Renew. Sustain. Energy. 2013, 5, 012701.

Ezeldin, M.; Ishak, C. Y.; Eljack, M.; Milad, M. Chem. Methodol. 2018, 3, 64-74.

Pandey, R. K.; Rehman, A.; Sarviya, R. M. Renew. Sustain. Energy Rev. 2012, 16, 1762–1778.

Atabani, A. E.; Badruddin, I. A.; Mekhilef, S.; Silitonga, A. S. Renew. Sustain. Energy Rev. 2011, 15, 4586-4610.

Harris, K. R.; Kanakubo, M.; Woolf, L. A. J. Chem. Eng. Data. 2007, 52, 1080-1085.

Lee, S. W.; Tanaka, D.; Kusaka, J.; Daisho, Y. JSAE Rev. 2002, 23, 407-414.

Yasin, M. H. M.; Mamat, R.; Yusop, A. F.; Rahim, R.; Aziz, A.; Shah; L. A. Procedia Eng. 2013, 53, 701-706.

Duncan, A. M.; Ahosseini, A.; McHenry, R.; Depcik, C. D.; Williams, S. M. S.; Scurto, A. M. Energy Fuels. 2011, 24, 5708-5716.

Ishak, C. Y.; Hassan, E. A.; Ezeldin, M. Am. J. Anal. Chem. 2017, 8, 355-369.






Regular Articles