Improvement the Physico-chemical Characteristics of Diesel Fuel using Gamma Irradiation
Improvement the Physico-chemical Characteristics of Diesel Fuel: Cracking the organic compounds using Gamma Irradiation
DOI:
https://doi.org/10.29356/jmcs.v65i4.1552Keywords:
Gamma irradiation, distillation, kinematic viscosity, flash pointAbstract
Abstract. The effect of gamma irradiation on physico-chemical properties of petro-diesel fuel using different rate and absorbed doses has been studied. The diesel fuel samples were exposed to gamma radiation for 1.3 h using different absorbed doses: 3, 6, 10, and 15 kGy, with dose rates 2.27, 4.5, 7.4, and 11.15 kGy/h, respectively. Physico-chemical characteristics of diesel fuel were determined according to the standard test methods assigned by ASTM, characteristics are: cetane number, distillation recovery points, flash point, calorific value, density, and kinematic viscosity. The effect of gamma irradiation doses on organic compounds of diesel fuel was study using GC/MS technique. Experimental results show that the density, distillation, kinematic viscosity and flash point were decreased at absorbed doses 3, 6 and 15 kGy whereas increases at 10 kGy, corresponding with rate doses. Cetane number of diesel fuel increased after exposure to 3, 6, and 15 kGy but decreased at 10 kGy. These results can be attributed to the broken and formed bonds as a result of the high applied energy. The formed fragments at (10 kGy; 7.5 kGy/h) made a new compounds that have physical parameters affected negatively on the overall properties of diesel fuel. The formed fragments in diesel fuel after exposed to 3, 6, and 15 kGy (2.27, 4.5, and 11.15 kGy/h) have converted some of cyclic, aromatic, and branched organic compounds to linear hydrocarbons, which supported increasing of cetane number to 54. All characteristics have been improved within limits assigned by ASTM.
Resumen. Se estudió el efecto de la irradiación gamma, a diferentes velocidades y dosis adsorbidas, sobre las propiedades físico-químicas del combustible de petróleo diésel. Las muestras de combustible diesel se expusieron a radiación gamma durante 1,3 h utilizando diferentes dosis absorbidas: 3, 6, 10 y 15 kGy, con tasas de dosis de 2,27, 4,5, 7,4 y 11,15 kGy / h, respectivamente. Las características físico-químicas del combustible diesel se determinaron de acuerdo con los métodos de prueba estándar ASTM, las características son: índice de cetano, puntos de recuperación de la destilación, punto de inflamación, poder calorífico, densidad y viscosidad cinemática. Se estudió el efecto de las dosis de irradiación gamma sobre los compuestos orgánicos del combustible diesel mediante la técnica GC / MS. Los resultados experimentales muestran que la densidad, la destilación, la viscosidad cinemática y el punto de inflamación disminuyeron en las dosis absorbidas de 3, 6 y 15 kGy mientras que aumentaron a 10 kGy. El número de cetanos en el combustible diesel aumentó después de la exposición a 3, 6 y 15 kGy, pero disminuyó a 10 kGy. Estos resultados se se taribuyen a enlaces rotos y formados como resultado de la alta energía aplicada. Los fragmentos formados a (10 kGy; 7,5 kGy / h) produjeron nuevos compuestos que tienen parámetros físicos que afectan negativamente a las propiedades generales del combustible diesel. Los fragmentos formados en el combustible diesel después de la exposición a 3, 6 y 15 kGy (2,27, 4,5 y 11,15 kGy / h) convirtieron algunos de los compuestos orgánicos cíclicos, aromáticos y ramificados en hidrocarburos lineales, lo que contribuyó al aumento del índice de cetano a 54. Todas las características se han mejorado dentro de los límites asignados por ASTM.
Downloads
References
Barrientos, A.; Ortuño, M.T.; Morales, J.M.; Martinez TeUo, F.; Rodicio, J.L. Arch. Intern. Med. 1977, 137, 1217. DOI: https://doi.org/10.1001/archinte.1977.03630210087026
Kwon, Y.; Mann, N.; Rickeard, D.J.; Haugland, R.; Ulvund, K.A.; Kvinge, F.; Wilson, G. SAE. 2001, 01, 3522.
Zannis, T.C.; Hountalas. Energy Fuels. 2004, 18, 659-666. DOI: https://doi.org/10.1021/ef0301598
Zannis, T.C. J. Energy Inst. 2004, 77, 16- 25.
Annual book of ASTM standards. American Society for Testing and Materials. West Conshohocken, Salvter. J. Rand. 2005.
Rakopoulos, C.D.; Hountalas, D.T.; Zannis, T.C.; Levendis, Y.A. SAE. 2004, 1, 2924.
Szybist, J. P.; Boehman, A. L. SAE. 2003, 1, 1039.
Cheng, A.S.; Upatnieks, A.; Mueller, C.J. Int. J. Engine. Res. 2006, 7, 297-318. DOI: https://doi.org/10.1243/14680874JER05005
Fisher, E. M.; Pitz, W. J.; Curran, H.J.; Westbrook, C. K. Proc. Combust. Inst. 2000, 28, 1579-1586. DOI: https://doi.org/10.1016/S0082-0784(00)80555-X
Nakakita, K.; Ban, H.; Takasu, S.; Hotta, Y.; Inagaki, K.; Weissman, W. SAE. 2003, 1, 1914.
Van Bommel, M .J.; Oonk, H. A. J.; van Miltenberg, J. C. J. Chem. Eng. 2004, 49, 1036-1042. DOI: https://doi.org/10.1021/je0499364
Rashid, U; F. Anwar. Fuel. 2008, 87, 265-273. DOI: https://doi.org/10.1016/j.fuel.2007.05.003
Araújo, M. E.; Meireles, M. A. A. Fluid Phase Equilib. 2000, 169, 49-64. DOI: https://doi.org/10.1016/S0378-3812(00)00307-1
Zannis, T. C.; Hountalas, D.T.; Papagiannakis, R. G. Energy Fuels. 2007, 21, 2642-2654. DOI: https://doi.org/10.1021/ef070149x
Kidoguchi, Y.; Yang, C.; Kato, R.; Miwa, K. J. SAE Review. 2000, 21, 469-475. DOI: https://doi.org/10.1016/S0389-4304(00)00075-8
Andrade, L. d. S.; Calvo, W. A. P; Sato, I. P.; Duarte, C. L. Petroleum and diesel sulfur degradation under gamma radiation, Energetic and Nuclear Research Institute (IPEN/CNEN), Av. Lineu Prestes 2242, Butanta, CEP 05508-000 São Paulo–SP, Brazil, 2014.
Tseng, C. C.; Viskanta, R. Combust. Sci. Technol. 2005, 177, 8, 1511-1542. DOI: https://doi.org/10.1080/00102200590956696
Duran, A.; Carmona, M.; Monteagudo, J. M. Chemosphere. 2004, 56, 209-225. DOI: https://doi.org/10.1016/j.chemosphere.2004.03.008
Jabbarova, L. Y. High Energy Chem. 2019, 53, 471-477. DOI: https://doi.org/10.1134/S0023119319060044
Jabbarova, L. Y.; Mustafayev, I. J. Appl. Spectrosc. 2018, 85, 686-690. DOI: https://doi.org/10.1007/s10812-018-0705-6
Jabbarova, L. Y.; Mustafayev, I. I.; Akberov, R.; Melikova, S. Z.; Akhmedova, T. N. Int. Res. J. Basic Appl. Sci. 2019, 1, 101-107.
Jabbarova, L. Y. Int.J. Appl. Fund. Res. 2019, 4, 72-75.
Jabbarova, L.; Mustafayev, I. J. Energy Environ. Chem. Eng. 2017, 2, 41- 45.
Jabbarova, L. Y.; Mustafayev, I. I.; Malikova, S. Z. Int. J. Appl. Fund. Res. 2017, 7, 239-243.
Jabbarova, L. Y.; Mustafayev, I. J. Energy Environ. Chem. Eng. 2017, 1, 62-66.
Jabbarova, L. Y. Melikova, S. Z.; Aliev, S. M. J. Radiat. Res. 2017, 4, 47-54.
Jabbarova, L. Y. «Influence of radiation on quality of motor fuels, Azerbaijan University of Architecture and Construction. International scientific-technical Conference, 2017, 317.
Eberle, D.; Treuhaft, M.; Tao, X. SAE Paper 2005, 1, 3689. DOI: https://doi.org/10.4271/2005-01-3689 DOI: https://doi.org/10.4271/2005-01-3689
Jabbarova, L. Y. Researches of a high-temperature radiolysis of diesel fuel. Proceedings of International Scientific Conference on Sustainable Development Goals. 24-25 November 2017, Baku, Azerbaijan. 152-155.
Jabbarova, L. Y.; Melikova, S. Z.; Aliev, S. M. J. Radiat. Res. 2015, 2, 71-76.
Jabbarova, L. Y.; Mustafaev, I, I.; Nabizade, Z. O.; Rzayev, R. S.; Akhmadbayova, S. F. DOAG.2014, 9, 80-84. DOI: https://doi.org/10.19261/cjm.2014.09(1).09
Luana D. S.; Andrade, W. A. P. C.; Ivone, M. S.; Celina, L. D. Radiat. Phys. Chem. 2015, 115, 196-201. DOI: https://doi.org/10.1016/j.radphyschem.2014.09.015
Dianne, L. P.; Jay, C.; Terrence, D.; Andy, M.; DJim, C. Fuel. 2021, 289, 119963. DOI: https://doi.org/10.1016/j.fuel.2020.119963
Osman, M. E.; Sheshko, T. F.; Dipheko, T. D.; Abdallah, N. E.; Hassan, E. A.; Ishak, C. Y. Int. J. Green Energy. 2021, 18, 1396- 1404. DOI: 10.1080/15435075.2021.1904943. DOI: https://doi.org/10.1080/15435075.2021.1904943
Nivin, C.; Clinton, J.; Premnath, V.; Sajja, S. S.; Thangaraja, J. A. Fuel. 2021, 289, 119918. DOI: https://doi.org/10.1016/j.fuel.2020.119918
Jabbarova, L. Rad. Sci. Tech. 2020, 6, 1-6. DOI: 10.11648/j.rst.20200601.11. DOI: https://doi.org/10.11648/j.rst.20200601.11
Ezeldin, M.; Elamin, A, A.; Masaad, A. M.; Suleman, N. M.; Osama, A. A. Am. Res. Thoughts. 2015, 1, 2862-2870.
Ezeldin, M.; Masaad, A. M.; Abualreish, M. J. A.; Ishak C. Y. Orient. J. Chem. 2017, 33, 2085-2089. DOI: https://doi.org/10.13005/ojc/330458
Ali, O. M.; Abdullah, N. R.; Mamat, R.; Abdullah A. A. Energy Procedia. 2015, 75, 2357–2362. DOI: https://doi.org/10.1016/j.egypro.2015.07.490
Jans, A.; Chaineaux, J. Chem. Eng. Trans. 2013, 31, 943-948 /CET 133–1158.
Harvey, D. Modren Analytical Chemistry. Ed. 6, New York, DePauw University, 2000.
Shahabuddin, M.; Masjuki, H. H.; Kalam M. A.; Mofijur, M.; Hazrat, M. A.; Liaquat, A. M. Energy Procedia. 2012, 14, 1624-29. DOI: https://doi.org/10.1016/j.egypro.2011.12.1143
Pogorevc, P.; Kegl, B.; Skerget, L. Energy Fuels. 2008, 22, 1266-1274. DOI: https://doi.org/10.1021/ef700544r
Sarkar, S. Fuels and Combustion, Ed. 3, University Press, India, 2009.
Ali, O. M.; Mamat, R.; Faizal, C. K. M. J. Renew. Sustain. Energy. 2013, 5, 012701. DOI: https://doi.org/10.1063/1.4792846
Ezeldin, M.; Ishak, C. Y.; Eljack, M.; Milad, M. Chem. Methodol. 2018, 3, 64-74.
Pandey, R. K.; Rehman, A.; Sarviya, R. M. Renew. Sustain. Energy Rev. 2012, 16, 1762–1778. DOI: https://doi.org/10.1016/j.rser.2011.11.010
Atabani, A. E.; Badruddin, I. A.; Mekhilef, S.; Silitonga, A. S. Renew. Sustain. Energy Rev. 2011, 15, 4586-4610. DOI: https://doi.org/10.1016/j.rser.2011.07.092
Harris, K. R.; Kanakubo, M.; Woolf, L. A. J. Chem. Eng. Data. 2007, 52, 1080-1085. DOI: https://doi.org/10.1021/je700032n
Lee, S. W.; Tanaka, D.; Kusaka, J.; Daisho, Y. JSAE Rev. 2002, 23, 407-414. DOI: https://doi.org/10.1016/S0389-4304(02)00221-7
Yasin, M. H. M.; Mamat, R.; Yusop, A. F.; Rahim, R.; Aziz, A.; Shah; L. A. Procedia Eng. 2013, 53, 701-706. DOI: https://doi.org/10.1016/j.proeng.2013.02.091
Duncan, A. M.; Ahosseini, A.; McHenry, R.; Depcik, C. D.; Williams, S. M. S.; Scurto, A. M. Energy Fuels. 2011, 24, 5708-5716. DOI: https://doi.org/10.1021/ef100382f
Ishak, C. Y.; Hassan, E. A.; Ezeldin, M. Am. J. Anal. Chem. 2017, 8, 355-369. DOI: https://doi.org/10.4236/ajac.2017.85027


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
