Novel and Reusable Mesoporous Silica Supported 4-Methylbenzenesul- fonate-functionalized Ionic Liquids for Room Temperature Highly Efficient Preparation of 2,4,5-Triaryl-1H-imidazoles

Authors

  • Yang Liu China Three Gorges University
  • Qi Rong China Three Gorges University
  • Chen Chen Jiangsu University of Science and Technology
  • Hu Yu Lin China Three Gorges University http://orcid.org/0000-0003-2139-5032

DOI:

https://doi.org/10.29356/jmcs.v65i4.1529

Keywords:

Mesoporous silica, supported ionic liquid, high efficient, 2,4,5-triaryl-1H-imidazoles, synergetic and recyclable catalyst

Abstract

Abstract. A series of mesoporous materials supported ionic liquids were prepared and tested as effective and practical catalysts for the synthesis of 2,4,5-triaryl-1H-imidazoles. The effects of type of catalysts, catalyst amount, and catalyst stability have also been investigated in detail, the catalyst Ti-SBA-15@ILTsO exhibited excellent activity in excellent yields of 92 % ~ 99 % with low catalyst amount at room temperature within 1 h. In addition, the supported ionic liquid can be easily recovered and reused for six times with satisfactory catalytic activity. Furthermore, a general synergetic catalytic mechanism for the reaction was proposed. Maybe this work employing Ti-SBA-15@ILTsO as highly efficient and stable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles has potential commercial applications.

 

Resumen. Se prepararon y probaron una serie de materiales mesoporosos soportados con líquidos iónicos como catalizadores eficaces y prácticos para la síntesis de 2,4,5-triaryl-1H-imidazoles. También se investigaron en detalle los efectos del tipo de catalizadores, la cantidad de catalizador y la estabilidad del catalizador. El catalizador Ti-SBA-15@ILTsO mostró una excelente actividad con rendimientos excelentes del 92 % ~ 99% con una baja cantidad de catalizador a temperatura ambiente en 1 h. Además, el líquido iónico soportado puede recuperarse fácilmente y reutilizarse durante seis veces con una actividad catalítica satisfactoria. Por otro lado, se propuso un mecanismo catalítico sinérgico general para la reacción. Este trabajo que emplea Ti-SBA-15@ILTsO como catalizador altamente eficiente y estable para la síntesis de 2,4,5-triaril-1H-imidazoles puede tener aplicaciones potencialmente comerciales.

Downloads

Download data is not yet available.

Author Biographies

Yang Liu, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

Qi Rong, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

Chen Chen, Jiangsu University of Science and Technology

College of Environmental and Chemical Engineering.

Hu Yu Lin, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

References

Shabalin, D. A.; Camp, J. E. Org. Biomol. Chem. 2020, 18, 3950-3964. DOI: https://doi.org/10.1039/D0OB00350F

Ren, Z. L.; Cai, S.; Liu, Y. Y.; Xie, Y. Q.; Yuan, D.; Lei, M.; He, P.; Wang, L. J. Org. Chem. 2020, 85, 11014-11024. DOI: https://doi.org/10.1021/acs.joc.0c01454

Wang, L.; Chen, H.; Zhang, N.; Liu, X.; Zheng, K. Tetrahedron Lett. 2021, 64, 152735. DOI: https://doi.org/10.1016/j.tetlet.2020.152735

Jin, X.; Chen, H.; Zhang, W.; Wang, B.; Shen, W.; Lu, H. Appl. Organometal. Chem. 2018, 32, e4577. DOI: https://doi.org/10.1002/aoc.4577

Hojati, S. F.; Nezhadhoseiny, S. A.; Beykzadeh, Z. Monatsh. Chem. 2013, 144, 387-390. DOI: https://doi.org/10.1007/s00706-012-0830-5

Reddy, M. V.; Jeong, Y. T. J. Fluorine Chem.2012, 142, 45-51. DOI: https://doi.org/10.1016/j.jfluchem.2012.06.013

Munsur, A. Z. A.; Roy, H. N.; Imon, M. K. Arab. J. Chem. 2020, 13, 8807-8814. DOI: https://doi.org/10.1016/j.arabjc.2020.10.010

Shaabani, A.; Afshari, R.; Hooshmand, S. E.; Nejad, M. K. ACS Sustain. Chem. Eng. 2017, 5, 9506-9516. DOI: https://doi.org/10.1021/acssuschemeng.7b02741

Jayram, J.; Jeena, V. RSC Adv. 2018, 8, 37557-37563. DOI: https://doi.org/10.1039/C8RA07238H

Kumar, G.; Mogha, N. K.; Kumar, M.; Subodh, Masram, D. T. Dalton Trans. 2020, 49, 1963-1974. DOI: https://doi.org/10.1039/C9DT04416G

Naeimi, H.; Aghaseyedkarimi, D. New J. Chem. 2015, 39, 9415-9421. DOI: https://doi.org/10.1039/C5NJ01273B

Allahresani, A.; Naghdi, E.; Nasseri, M. A. Inorg. Chem. Commun. 2020, 119, 108137. DOI: https://doi.org/10.1016/j.inoche.2020.108137

Shaabani, A.; Afshari, R.; Hooshmand, S. E. New J. Chem. 2017, 41, 8469-8481. DOI: https://doi.org/10.1039/C7NJ01150D

Sangshetti, J. N.; Kokare, N. D.; Kotharkara, S. A.; Shinde, D. B. J. Chem. Sci. 2008, 120, 463-467. DOI: https://doi.org/10.1007/s12039-008-0072-6

Zarnegar, Z.; Safari, J. RSC Adv. 2014, 4, 20932-20939. DOI: https://doi.org/10.1039/C4RA03176H

Waheed, M.; Ahmed, N.; Alsharif, M. A.; Alahmdi, M. I.; Mukhtar, S. ChemistrySelect 2017, 2, 7946-7950. DOI: https://doi.org/10.1002/slct.201701299

Nguyen, T. T.; Le, N. P. T.; Nguyen, T. T.; Tran, P. H. RSC Adv. 2019, 9, 38148-38153. DOI: https://doi.org/10.1039/C9RA08074K

Kumar, D.; Kommi, D. N.; Bollineni, N.; Patel, A. R.; Chakraborti, A. K. Green Chem. 2012, 14, 2038-2049. DOI: https://doi.org/10.1039/c2gc35277j

Vinoth, G.; Indira, S.; Bharathi, M.; Archana, G.; Alves, L. G.; Martins, A. M.; Bharathi, K. S. Inorg. Chim. Acta 2021, 516, 120089. DOI: https://doi.org/10.1016/j.ica.2020.120089

Pervaiz, S.; Mutahir, S.; Ullah, I.; Ashraf, M.; Liu, X.; Tariq, S.; Zhou, B. J.; Khan, M. A. Chem. Biodivers. 2020, 17, e1900493. DOI: https://doi.org/10.1002/cbdv.201900493

Nordness, O.; Brennecke, J. F. Chem. Rev. 2020, 120, 12873-12902. DOI: https://doi.org/10.1021/acs.chemrev.0c00373

Hu, Y.; Zhang, R. L.; Fang, D. Environ. Chem. Lett. 2019, 17, 501-508. DOI: https://doi.org/10.1007/s10311-018-0793-9

Itoh, T.; Takagi, Y. ACS Sustain. Chem. Eng. 2021, 9, 1443-1458. DOI: https://doi.org/10.1021/acssuschemeng.0c07097

Tapia, M. G.; Montes, A. C.; Morcillo, E. M.; Huguet, M. T. G.; de Torres, N. H. W.; Ríos R. C. J. Mex. Chem. Soc. 2014, 58, 16-21.

Doherty, A. P.; Patterson, S.; Diaconu, L.; Graham, L.; Barhdadi, R.; Puchelle, V.; Wagner, K.; Office, D. L.; Chen, J.; Wallace, G. G. J. Mex. Chem. Soc. 2015, 59, 263-268; Guerrero R. L.; Rivero, I. A. J. Mex. Chem. Soc. 2012, 56, 201-206.

Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Arab. J. Chem. 2017, 10, S2754-S2761. DOI: https://doi.org/10.1016/j.arabjc.2013.10.022

Hilal, D. A.; Hanoon, H. D. Res. Chem. Intermed. 2020, 46, 1521-1538. DOI: https://doi.org/10.1007/s11164-019-04048-z

Fehrmann, R.; Riisager, A.; Haumann, M. Supported ionic liquids: Fundamentals and applications, Wiley-VCH, Weinheim, 2014; Mohamedali, M.; Ibrahim, H.; Henni, A. Micropor. Mesopor. Mater. 2020, 294, 109916. DOI: https://doi.org/10.1002/9783527654789

Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R. K. Mater. Horiz. 2020, 7, 3097-3130. DOI: https://doi.org/10.1039/D0MH01088J

Sudarsanam, P.; Zhong, R.; den Bosch, S. V.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Chem. Soc. Rev. 2018, 47, 8349-8402. DOI: https://doi.org/10.1039/C8CS00410B

Yao, N.; Chen, C.; Li, D. J.; Hu, Y. L. J. Environ. Chem. Eng. 2020, 8, 103953. DOI: https://doi.org/10.1016/j.jece.2020.103953

Kukawka, R.; Pawlowska-Zygarowicz, A.; Dzialkowska, J.; Pietrowski, M.; Maciejew, H.; Bica, K.; Smiglak, M. ACS Sustain. Chem. Eng. 2019, 7, 4699-4706. DOI: https://doi.org/10.1021/acssuschemeng.8b04357

Dhar, A.; Kumar, N. S.; Khimani, M.; Al-Fatesh, A. S.; Ibrahim, A. A.; Fakeeha, A. H.; Patel, H.; Vekariya, R. L. RSC Adv. 2020, 10, 15282-15292. DOI: https://doi.org/10.1039/D0RA00556H

Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Nanoscale 2020, 12, 11333-11363; Awoke, Y.; Chebude, Y.; Márquez-Álvarez, C.; Díaz, I. Catal. Today 2020, 345, 190-200; Wang, S.; Li, Z.; Yi, W.; Fu, P.; Zhang, A.; Bai, X. Renew. Energy 2021, 163, 1673-1681; Miao, K.; Luo, X.; Wang, W.; Guo, J.; Guo, S.; Cao, F.; Hu, Y.; Chang, P.; Feng, G. Micropor. Mesopor. Mater. 2019, 289, 109640; Ruchomski, L.; Pikus, S.; Pikula, T.; M?czka, E.; Kosmulski, M. Colloid. Surface. A 2020, 599, 124922.

Dokhaee, Z.; Ghiaci, M.; Farrokhpour, H.; Buntkowsky, G.; Breitzke, H. Ind. Eng. Chem. Res. 2020, 59, 12632-12644. DOI: https://doi.org/10.1021/acs.iecr.0c01050

Huang, Y.; Zheng, K.; Liu, X.; Meng, X.; Astruc, D. Inorg. Chem. Front. 2020, 7, 939-945. DOI: https://doi.org/10.1039/C9QI01449G

Chatterjee, S.; Bhaduri, K.; Modak, A.; Selvaraj, M.; Bal, R.; Chowdhury, B.; Bhaumik, A. Mol. Catal. 2021, 502, 111381. DOI: https://doi.org/10.1016/j.mcat.2020.111381

Ziarani, G. M.; Rohani, S.; Ziarati, A.; Badiei, A. RSC Adv. 2018, 8, 41048-41100. DOI: https://doi.org/10.1039/C8RA09038F

Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Nanoscale 2020, 12, 11333-11363. DOI: https://doi.org/10.1039/D0NR00732C

×

Downloads

Published

2021-09-23

Issue

Section

Regular Articles
x

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...