Recyclable Nanomagnetic Fe3O4@APTES catalyst role on the Hydrolysis of Polycarbonate Wastes

Authors

  • Mir mohammad Alavi Nikje Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran
  • Samira Emami Department of Chemistry, Faculty of Science, Imam Khomeini International University, P.O. Box 288, Qazvin, Iran

DOI:

https://doi.org/10.29356/jmcs.v62i4.651

Keywords:

Bisphenol-A, Chemical recycling, Fe3O4@APTES nano-heterocatalyst, Hydrothermal condition, Hydrolysis, Polycarbonate wastes

Abstract

In this research, the effect of (3-Aminopropyl) triethoxysilane (APTES) modified Fe3O4 (Fe3O4@APTES) core-shell nanomaterials as the recyclable heterocatalyst on the recovery of bisphenol-A (BPA) from hydrolysis of polycarbonate (PC) wastes were investigated. In the evaluated reactions, water and diethylene glycol (DEG) were used as the green solvent composition and the water as well as magnetic heterocatalyst content were optimized. By examining the results of the above-mentioned reactions, it was observed that by using 25 pbw of water and 2 pbw of magnetic heterocatalyst (both based on total waste and solvent weights), BPA achieved in 100% yield. The Fe3O4@APTES nanomaterials as the heterocatalyst can be recovered and reused up to five intervals with our significant activity losses. The resulting BPA and nanomaterials has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and spectroscopic methods (1H NMR, 13C NMR, FT-IR).

Downloads

Download data is not yet available.

References

Taguchi, M.; Ishikawa, Y.; Kataoka, S.; Naka, T.; Funazukuri, T. Catal. Commun. 2016, 84, 93-97 DOI: https://doi.org/10.1016/j.catcom.2016.06.009+ DOI: https://doi.org/10.1016/j.catcom.2016.06.009

Do, T.; Baral, E. R.; Kim, J. G. Polym. J. 2018, 143, 106-114 DOI: https://doi.org/10.1016/j.polymer.2018.04.015+ DOI: https://doi.org/10.1016/j.polymer.2018.04.015

Beneš, H.; Paruzel, A.; Trhlíková, O.; Paruzel, B. Eur. Polym. J. 2017, 86, 173-187 DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.030+ DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.030

Liu, Y. Y.; Qin, G. H.; Song, X. Y.; Ding, J. W.; Liu, F. S.; Yu, S. T.; Ge, X. P. J. Taiwan Inst. Chem. Eng. 2018, 86, 222-229 DOI: https://doi.org/10.1016/j.jtice.2018.02.028+ DOI: https://doi.org/10.1016/j.jtice.2018.02.028

Tagaya, H.; Katoh, K.; Kadokawa, J. I.; Chiba, K. Polym. Degrad. Stab. 1999, 64, 289-292 DOI: https://doi.org/10.1016/S0141-3910(98)00204-3+ DOI: https://doi.org/10.1016/S0141-3910(98)00204-3

Watanabe, M.; Matsuo, Y.; Matsushita, T.; Inomata, H.; Miyake, T.; Hironaka, K. Polym. Degrad. Stab. 2009, 94, 2157-2162 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.010+ DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.010

Tsintzou, G. P.; Antonakou, E. V.; Achilias, D. S. J. Hazard. Mater. 2012, 241, 137-145 DOI: https://doi.org/10.1016/j.jhazmat.2012.09.027+ DOI: https://doi.org/10.1016/j.jhazmat.2012.09.027

Deirram, N.; Rahmat, A. R. APCBEE Proc. 2012, 3, 172-176 DOI: https://doi.org/10.1016/j.apcbee.2012.06.065+ DOI: https://doi.org/10.1016/j.apcbee.2012.06.065

Blazso, M. J. Anal. Appl. Pyrolysis, 1999, 51, 73-88 DOI: https://doi.org/10.1016/S0165-2370(99)00009-1+ DOI: https://doi.org/10.1016/S0165-2370(99)00009-1

Šala, M.; Kitahara, Y.; Takahashi, S.; Fujii, T. Chemosphere 2010, 78, 42-45 DOI: https://doi.org/10.1016/j.chemosphere.2009.10.036+ DOI: https://doi.org/10.1016/j.chemosphere.2009.10.036

Antonakou, E. V.; Kalogiannis, K. G.; Stephanidis, S. D.; Triantafyllidis, K. S.; Lappas, A. A.; Achilias, D. S. Waste Manage. 2014, 34, 2487-2493 DOI: https://doi.org/10.1016/j.wasman.2014.08.014+ DOI: https://doi.org/10.1016/j.wasman.2014.08.014

Hata, S.; Goto, H.; Yamada, E.; Oku, A. Polym. J. 2002, 43, 2109-2116 DOI: https://doi.org/10.1016/S0032-3861(01)00800-X+ DOI: https://doi.org/10.1016/S0032-3861(01)00800-X

Hatakeyama, K.; Kojima, T.; Funazukuri, T. J. Mater. Cycles Waste Manage. 2014, 16, 124-130 DOI: https://doi.org/10.1007/s10163-013-0151-8+ DOI: https://doi.org/10.1007/s10163-013-0151-8

Li, B.; Xue, F.; Wang, J.; Ding, E.; Li, Z. Prog. Rubber Plast. Recycl. Technol. 2017, 33, 39-50. DOI: https://doi.org/10.1177/147776061703300103

Pant, D. Process Saf. Environ. Prot. 2016, 100, 281-287 DOI: https://doi.org/10.1016/j.psep.2015.12.012+ DOI: https://doi.org/10.1016/j.psep.2015.12.012

Hu, L. C.; Oku, A.; Yamada, E. Polym. J. 1998, 39, 3841-3485 DOI: https://doi.org/10.1016/S0032-3861(97)10298-1+ DOI: https://doi.org/10.1016/S0032-3861(97)10298-1

Liu, F.; Li, L.; Yu, S.; Lv, Z.; Ge, X. J. Hazard. Mater. 2011, 189, 249-254 DOI: https://doi.org/10.1016/j.jhazmat.2011.02.032+ DOI: https://doi.org/10.1016/j.jhazmat.2011.02.032

Quaranta, E.; Sgherza, D.; Tartaro, G. Green Chem. 2017, 19, 5422-5434 DOI: 10.1039/C7GC02063E+ DOI: https://doi.org/10.1039/C7GC02063E

Wang, G. S.; Wang, L.; Wei, Z. Y.; Sang, L.; Dong, X. F.; Qi, M.; Chen, G. Y.; Chang, Y.; Zhang, W. X. Chin. J. Polym. Sci. 2013, 31, 1011-1021 DOI: https://doi.org/10.1007/s10118-013-1255-2+ DOI: https://doi.org/10.1007/s10118-013-1255-2

Lee, D. K.; Kang, Y. S.; Lee, C. S.; Stroeve, P. J. Phys. Chem. B 2002, 106, 7267-7271 DOI: https://pubs.acs.org/doi/abs/10.1021/jp014446t+ DOI: https://doi.org/10.1021/jp014446t

Liao, M. H.; Chen, D. H. J. Mater. Chem., 2002, 12, 3654-3659 DOI: 10.1039/B207158D+ DOI: https://doi.org/10.1039/b207158d

Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao, H. J. Phys. Chem. B, 2005, 109, 23233-23236 DOI: https://pubs.acs.org/doi/abs/10.1021/jp054291f+ DOI: https://doi.org/10.1021/jp054291f

Tan, S. T.; Wendorff, J. H.; Pietzonka, C.; Jia, Z. H.; Wang, G. Q. Chem. Phys. Chem., 2005, 6, 1461-1465 DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.200500167+ DOI: https://doi.org/10.1002/cphc.200500167

Yang, H. H.; Zhang, S. Q.; Chen, X. L.; Zhuang, Z. X.; Xu, J. G.; Wang, X. R. J. Anal. Chem. 2004, 76, 1316-1321 DOI: https://pubs.acs.org/doi/abs/10.1021/ac034920m+ DOI: https://doi.org/10.1021/ac034920m

Zhang, D.; Liu, Z.; Han, S.; Tang, T., Liu, X.; Han, S.; Lei, B., Zhou, C. Nano Lett. 2004, 4, 2151-2155 DOI: https://pubs.acs.org/doi/abs/10.1021/nl048758u+ DOI: https://doi.org/10.1021/nl048758u

Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989-1992 DOI: 10.1126/science.287.5460.1989+ DOI: https://doi.org/10.1126/science.287.5460.1989

Frias, J. C.; Ma, Y.; Williams, K. J.; Fayad, Z. A.; Fisher, E. A., Nano Lett. 2006, 6, 2220-2224 DOI: https://pubs.acs.org/doi/abs/10.1021/nl061498r+ DOI: https://doi.org/10.1021/nl061498r

Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Chem. Mater. 2004, 16, 5527-5534 DOI: https://pubs.acs.org/doi/abs/10.1021/cm0487977+ DOI: https://doi.org/10.1021/cm0487977

Yang, X.; Chen, L.; Han, B.; Yang, X.; Duan, H. Polym. J. 2010, 51, 2533-2539 DOI: https://doi.org/10.1016/j.polymer.2010.04.032+ DOI: https://doi.org/10.1016/j.polymer.2010.04.032

Naeimi, H.; Nazifi, Z. S. J. Nanopart. Res. 2013, 15, 2026-2037 DOI: https://doi.org/10.1007/s11051-013-2026-2+ DOI: https://doi.org/10.1007/s11051-013-2026-2

Jafarzadeh, M.; Soleimani, E.; Norouzi, P.; Adnan, R.; Sepahvand, H. J. Fluorine Chem. 2015, 178, 219-224 DOI: https://doi.org/10.1016/j.jfluchem.2015.08.007+ DOI: https://doi.org/10.1016/j.jfluchem.2015.08.007

Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2014, 30, 145-152. DOI: https://doi.org/10.1177/147776061403000302

Alavi Nikje, M. M.; Askarzadeh, M. Polimery W. 2013, 23, 29-31 DOI: http://dx.doi.org/10.1590/S0104-14282013005000019+ DOI: https://doi.org/10.1590/S0104-14282013005000019

Alavi Nikje, M. M.; Askarzadeh, Polimery W. 2013, 58, 292-294 DOI: dx.doi.org/10.14314/polimery.2013.292+ DOI: https://doi.org/10.14314/polimery.2013.292

Alavi Nikje, M. M. Polimery W. 2011, 56, 381-384. DOI: https://doi.org/10.14314/polimery.2011.381

Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 169-176. DOI: https://doi.org/10.1177/147776061302900303

Emami, S.; Alavi Nikje, M. M. Iran. Polym. J. 2018, 27, 275-286 DOI: https://doi.org/10.1007/s13726-018-0607-8+ DOI: https://doi.org/10.1007/s13726-018-0607-8

Emami, S.; Alavi Nikje, M. M. Green Process Synth. in press DOI: https://doi.org/10.1515/gps-2018-0028+ DOI: https://doi.org/10.1515/gps-2018-0028

Emami, S.; Alavi Nikje, M. M. Russ. J. Appl. Chem. 2018, 91, 159-166 DOI: https://doi.org/10.1134/S107042721801024X+ DOI: https://doi.org/10.1134/S107042721801024X

Alavi Nikje, M. M.; Nejad, M. A.; Shabani, K.; Haghshenas, M. Colloid Polym. Sci. 2013, 291, 903-909 DOI: https://doi.org/10.1007/s00396-012-2808-6+ DOI: https://doi.org/10.1007/s00396-012-2808-6

Alavi Nikje, M. M.; Moghaddam, S. T.; Noruzian, M.; Farahmand Nejad, M. A; Shabani, K.; Haghshenas, M.; Shakhesi, S. Colloid Polym. Sci. 2014, 292, 627-633 DOI: https://doi.org/10.1007/s00396-013-3099-2+ DOI: https://doi.org/10.1007/s00396-013-3099-2

Saif, B.; Wang, C.; Chuan, D.; Shuang, S. J. Biomater. Nanobiotechnol. 2015, 6, 267-275 DOI: http://dx.doi.org/10.4236/jbnb.2015.64025+ DOI: https://doi.org/10.4236/jbnb.2015.64025

Massart, R. IEEE trans. Magn. 1981, 17, 1247-1248 DOI: 10.1109/TMAG.1981.1061188+ DOI: https://doi.org/10.1109/TMAG.1981.1061188

×

Published

2019-04-23

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...