Recyclable Nanomagnetic Fe3O4@APTES catalyst role on the Hydrolysis of Polycarbonate Wastes
DOI:
https://doi.org/10.29356/jmcs.v62i4.651Keywords:
Bisphenol-A, Chemical recycling, Fe3O4@APTES nano-heterocatalyst, Hydrothermal condition, Hydrolysis, Polycarbonate wastesAbstract
In this research, the effect of (3-Aminopropyl) triethoxysilane (APTES) modified Fe3O4 (Fe3O4@APTES) core-shell nanomaterials as the recyclable heterocatalyst on the recovery of bisphenol-A (BPA) from hydrolysis of polycarbonate (PC) wastes were investigated. In the evaluated reactions, water and diethylene glycol (DEG) were used as the green solvent composition and the water as well as magnetic heterocatalyst content were optimized. By examining the results of the above-mentioned reactions, it was observed that by using 25 pbw of water and 2 pbw of magnetic heterocatalyst (both based on total waste and solvent weights), BPA achieved in 100% yield. The Fe3O4@APTES nanomaterials as the heterocatalyst can be recovered and reused up to five intervals with our significant activity losses. The resulting BPA and nanomaterials has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), and spectroscopic methods (1H NMR, 13C NMR, FT-IR).
Downloads
References
Taguchi, M.; Ishikawa, Y.; Kataoka, S.; Naka, T.; Funazukuri, T. Catal. Commun. 2016, 84, 93-97 DOI: https://doi.org/10.1016/j.catcom.2016.06.009+ DOI: https://doi.org/10.1016/j.catcom.2016.06.009
Do, T.; Baral, E. R.; Kim, J. G. Polym. J. 2018, 143, 106-114 DOI: https://doi.org/10.1016/j.polymer.2018.04.015+ DOI: https://doi.org/10.1016/j.polymer.2018.04.015
Beneš, H.; Paruzel, A.; Trhlíková, O.; Paruzel, B. Eur. Polym. J. 2017, 86, 173-187 DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.030+ DOI: https://doi.org/10.1016/j.eurpolymj.2016.11.030
Liu, Y. Y.; Qin, G. H.; Song, X. Y.; Ding, J. W.; Liu, F. S.; Yu, S. T.; Ge, X. P. J. Taiwan Inst. Chem. Eng. 2018, 86, 222-229 DOI: https://doi.org/10.1016/j.jtice.2018.02.028+ DOI: https://doi.org/10.1016/j.jtice.2018.02.028
Tagaya, H.; Katoh, K.; Kadokawa, J. I.; Chiba, K. Polym. Degrad. Stab. 1999, 64, 289-292 DOI: https://doi.org/10.1016/S0141-3910(98)00204-3+ DOI: https://doi.org/10.1016/S0141-3910(98)00204-3
Watanabe, M.; Matsuo, Y.; Matsushita, T.; Inomata, H.; Miyake, T.; Hironaka, K. Polym. Degrad. Stab. 2009, 94, 2157-2162 DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.010+ DOI: https://doi.org/10.1016/j.polymdegradstab.2009.09.010
Tsintzou, G. P.; Antonakou, E. V.; Achilias, D. S. J. Hazard. Mater. 2012, 241, 137-145 DOI: https://doi.org/10.1016/j.jhazmat.2012.09.027+ DOI: https://doi.org/10.1016/j.jhazmat.2012.09.027
Deirram, N.; Rahmat, A. R. APCBEE Proc. 2012, 3, 172-176 DOI: https://doi.org/10.1016/j.apcbee.2012.06.065+ DOI: https://doi.org/10.1016/j.apcbee.2012.06.065
Blazso, M. J. Anal. Appl. Pyrolysis, 1999, 51, 73-88 DOI: https://doi.org/10.1016/S0165-2370(99)00009-1+ DOI: https://doi.org/10.1016/S0165-2370(99)00009-1
Šala, M.; Kitahara, Y.; Takahashi, S.; Fujii, T. Chemosphere 2010, 78, 42-45 DOI: https://doi.org/10.1016/j.chemosphere.2009.10.036+ DOI: https://doi.org/10.1016/j.chemosphere.2009.10.036
Antonakou, E. V.; Kalogiannis, K. G.; Stephanidis, S. D.; Triantafyllidis, K. S.; Lappas, A. A.; Achilias, D. S. Waste Manage. 2014, 34, 2487-2493 DOI: https://doi.org/10.1016/j.wasman.2014.08.014+ DOI: https://doi.org/10.1016/j.wasman.2014.08.014
Hata, S.; Goto, H.; Yamada, E.; Oku, A. Polym. J. 2002, 43, 2109-2116 DOI: https://doi.org/10.1016/S0032-3861(01)00800-X+ DOI: https://doi.org/10.1016/S0032-3861(01)00800-X
Hatakeyama, K.; Kojima, T.; Funazukuri, T. J. Mater. Cycles Waste Manage. 2014, 16, 124-130 DOI: https://doi.org/10.1007/s10163-013-0151-8+ DOI: https://doi.org/10.1007/s10163-013-0151-8
Li, B.; Xue, F.; Wang, J.; Ding, E.; Li, Z. Prog. Rubber Plast. Recycl. Technol. 2017, 33, 39-50. DOI: https://doi.org/10.1177/147776061703300103
Pant, D. Process Saf. Environ. Prot. 2016, 100, 281-287 DOI: https://doi.org/10.1016/j.psep.2015.12.012+ DOI: https://doi.org/10.1016/j.psep.2015.12.012
Hu, L. C.; Oku, A.; Yamada, E. Polym. J. 1998, 39, 3841-3485 DOI: https://doi.org/10.1016/S0032-3861(97)10298-1+ DOI: https://doi.org/10.1016/S0032-3861(97)10298-1
Liu, F.; Li, L.; Yu, S.; Lv, Z.; Ge, X. J. Hazard. Mater. 2011, 189, 249-254 DOI: https://doi.org/10.1016/j.jhazmat.2011.02.032+ DOI: https://doi.org/10.1016/j.jhazmat.2011.02.032
Quaranta, E.; Sgherza, D.; Tartaro, G. Green Chem. 2017, 19, 5422-5434 DOI: 10.1039/C7GC02063E+ DOI: https://doi.org/10.1039/C7GC02063E
Wang, G. S.; Wang, L.; Wei, Z. Y.; Sang, L.; Dong, X. F.; Qi, M.; Chen, G. Y.; Chang, Y.; Zhang, W. X. Chin. J. Polym. Sci. 2013, 31, 1011-1021 DOI: https://doi.org/10.1007/s10118-013-1255-2+ DOI: https://doi.org/10.1007/s10118-013-1255-2
Lee, D. K.; Kang, Y. S.; Lee, C. S.; Stroeve, P. J. Phys. Chem. B 2002, 106, 7267-7271 DOI: https://pubs.acs.org/doi/abs/10.1021/jp014446t+ DOI: https://doi.org/10.1021/jp014446t
Liao, M. H.; Chen, D. H. J. Mater. Chem., 2002, 12, 3654-3659 DOI: 10.1039/B207158D+ DOI: https://doi.org/10.1039/b207158d
Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Li, J.; Gao, H. J. Phys. Chem. B, 2005, 109, 23233-23236 DOI: https://pubs.acs.org/doi/abs/10.1021/jp054291f+ DOI: https://doi.org/10.1021/jp054291f
Tan, S. T.; Wendorff, J. H.; Pietzonka, C.; Jia, Z. H.; Wang, G. Q. Chem. Phys. Chem., 2005, 6, 1461-1465 DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.200500167+ DOI: https://doi.org/10.1002/cphc.200500167
Yang, H. H.; Zhang, S. Q.; Chen, X. L.; Zhuang, Z. X.; Xu, J. G.; Wang, X. R. J. Anal. Chem. 2004, 76, 1316-1321 DOI: https://pubs.acs.org/doi/abs/10.1021/ac034920m+ DOI: https://doi.org/10.1021/ac034920m
Zhang, D.; Liu, Z.; Han, S.; Tang, T., Liu, X.; Han, S.; Lei, B., Zhou, C. Nano Lett. 2004, 4, 2151-2155 DOI: https://pubs.acs.org/doi/abs/10.1021/nl048758u+ DOI: https://doi.org/10.1021/nl048758u
Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989-1992 DOI: 10.1126/science.287.5460.1989+ DOI: https://doi.org/10.1126/science.287.5460.1989
Frias, J. C.; Ma, Y.; Williams, K. J.; Fayad, Z. A.; Fisher, E. A., Nano Lett. 2006, 6, 2220-2224 DOI: https://pubs.acs.org/doi/abs/10.1021/nl061498r+ DOI: https://doi.org/10.1021/nl061498r
Caruntu, D.; Caruntu, G.; Chen, Y.; O'Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Chem. Mater. 2004, 16, 5527-5534 DOI: https://pubs.acs.org/doi/abs/10.1021/cm0487977+ DOI: https://doi.org/10.1021/cm0487977
Yang, X.; Chen, L.; Han, B.; Yang, X.; Duan, H. Polym. J. 2010, 51, 2533-2539 DOI: https://doi.org/10.1016/j.polymer.2010.04.032+ DOI: https://doi.org/10.1016/j.polymer.2010.04.032
Naeimi, H.; Nazifi, Z. S. J. Nanopart. Res. 2013, 15, 2026-2037 DOI: https://doi.org/10.1007/s11051-013-2026-2+ DOI: https://doi.org/10.1007/s11051-013-2026-2
Jafarzadeh, M.; Soleimani, E.; Norouzi, P.; Adnan, R.; Sepahvand, H. J. Fluorine Chem. 2015, 178, 219-224 DOI: https://doi.org/10.1016/j.jfluchem.2015.08.007+ DOI: https://doi.org/10.1016/j.jfluchem.2015.08.007
Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2014, 30, 145-152. DOI: https://doi.org/10.1177/147776061403000302
Alavi Nikje, M. M.; Askarzadeh, M. Polimery W. 2013, 23, 29-31 DOI: http://dx.doi.org/10.1590/S0104-14282013005000019+ DOI: https://doi.org/10.1590/S0104-14282013005000019
Alavi Nikje, M. M.; Askarzadeh, Polimery W. 2013, 58, 292-294 DOI: dx.doi.org/10.14314/polimery.2013.292+ DOI: https://doi.org/10.14314/polimery.2013.292
Alavi Nikje, M. M. Polimery W. 2011, 56, 381-384. DOI: https://doi.org/10.14314/polimery.2011.381
Alavi Nikje, M. M.; Askarzadeh, M. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 169-176. DOI: https://doi.org/10.1177/147776061302900303
Emami, S.; Alavi Nikje, M. M. Iran. Polym. J. 2018, 27, 275-286 DOI: https://doi.org/10.1007/s13726-018-0607-8+ DOI: https://doi.org/10.1007/s13726-018-0607-8
Emami, S.; Alavi Nikje, M. M. Green Process Synth. in press DOI: https://doi.org/10.1515/gps-2018-0028+ DOI: https://doi.org/10.1515/gps-2018-0028
Emami, S.; Alavi Nikje, M. M. Russ. J. Appl. Chem. 2018, 91, 159-166 DOI: https://doi.org/10.1134/S107042721801024X+ DOI: https://doi.org/10.1134/S107042721801024X
Alavi Nikje, M. M.; Nejad, M. A.; Shabani, K.; Haghshenas, M. Colloid Polym. Sci. 2013, 291, 903-909 DOI: https://doi.org/10.1007/s00396-012-2808-6+ DOI: https://doi.org/10.1007/s00396-012-2808-6
Alavi Nikje, M. M.; Moghaddam, S. T.; Noruzian, M.; Farahmand Nejad, M. A; Shabani, K.; Haghshenas, M.; Shakhesi, S. Colloid Polym. Sci. 2014, 292, 627-633 DOI: https://doi.org/10.1007/s00396-013-3099-2+ DOI: https://doi.org/10.1007/s00396-013-3099-2
Saif, B.; Wang, C.; Chuan, D.; Shuang, S. J. Biomater. Nanobiotechnol. 2015, 6, 267-275 DOI: http://dx.doi.org/10.4236/jbnb.2015.64025+ DOI: https://doi.org/10.4236/jbnb.2015.64025
Massart, R. IEEE trans. Magn. 1981, 17, 1247-1248 DOI: 10.1109/TMAG.1981.1061188+ DOI: https://doi.org/10.1109/TMAG.1981.1061188


Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
