Novel and Reusable Magnetic Zinc Ferrites Modified SBA-15 Supported Ionic Liquids for Sustainable and Efficient Cycloaddition of CO2 and Epoxides to Cyclic Carbonates
DOI:
https://doi.org/10.29356/jmcs.v68i3.1824Keywords:
Supported ionic liquid, magnetic zinc ferrites modified SBA-15, cycloaddition, cyclic carbonates, carbon dioxideAbstract
Abstract. A type of magnetic zinc ferrites modified SBA-15 supported ionic liquids have been synthesized and evaluated as effective catalysts for the synthesis of cyclic carbonates from epoxides and CO2. The effects of catalysts, CO2 pressure, reaction temperature, and catalyst stability have also been investigated, the catalyst ZnFe2O4@SBA-15-ILVO3 exhibited excellent activity in high to excellent yields (87~98 %) with excellent selectivities (98~99.7 %). Moreover, the catalyst exhibited excellent stability and could be easily recovered and reused for five times without a considerable decrease in catalytic activity. This work provides a sustainable and efficient strategy for the chemical fixation of carbon dioxide into valuable cyclic carbonates.
Resumen. Se sintetizó y evaluó un líquido iónico soportado tipo ferrita de zinc magnética modificada SBA-15 como un catalizador efectivo para la síntesis de carbonatos cíclicos a partir de epóxidos y CO2. Se investigaron los efectos del catalizador, el CO2, la presión, la temperatura de reacción y la estabilidad del catalizador; el catalizador ZnFe2O4@SBA-15-ILVO3 mostró una excelente actividad con rendimientos de altos a excelentes (87~98 %), así como excelentes selectividades. Adicionalmente, el catalizador mostró tener una excelente estabilidad, y se logró recuperar y reutilizar fácilmente en cinco ocasiones sin mostrar un decremento importante en su actividad catalítica. Este trabajo proporciona una estrategia sostenible y eficiente para la transformación química de dióxido de carbono en carbonatos cíclicos de alto valor.
Downloads
References
Ji, Y.; Xu J.; Sun H.; Liu, J. Chem. Res. Chin. Univ. 2022, 38, 688-697. DOI: https://doi.org/10.1007/s40242-022-2045-6
Kassim, M. A.; Meng, T. K. Sci. Total Environ. 2017, 584-585, 1121-1129. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.172
Wang, B.; Liu, J.; Yao, S.; Liu, F.; Li, Y.; He, J.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. J. Mater. Chem. A 2021, 9, 17143-17172. DOI: https://doi.org/10.1039/D1TA03895H
Jelmy, E. J.; Thomas, N.; Mathew, D. T.; Louis, J.; Padmanabhan, N. T.; Kumaravel, V.; John, H.; Pillai, S. C. React. Chem. Eng. 2021, 6, 1701-1738. DOI: https://doi.org/10.1039/D1RE00214G
Sable, D. A.; Vadagaonkar, K. S.; Kapdi, A. R.; Bhanage, B. M. Org. Biomol. Chem. 2021, 19, 5725-5757. DOI: https://doi.org/10.1039/D1OB00755F
Lopes, E. J. C.; Ribeiro, A. P. C.; Martins, L. M.D.R.S. Catalysts. 2020, 10, 479. DOI: https://doi.org/10.3390/catal10050479
Zhou, F.; Deng, Q.; Huang, N.; Zhou, W.; Deng, W. ChemistrySelect. 2020, 5, 10516-10520. DOI: https://doi.org/10.1002/slct.202001538
İkiz, M.; İspir, E.; Aytar, E.; Ulusoy, M.; Karabuğa, Ş.; Aslantaş, M.; Çelik, Ö. New J. Chem. 2015, 39, 7786-7796. DOI: https://doi.org/10.1039/C5NJ00571J
Muthuramalingam, S.; Velusamy, M.; Mayilmurugan, R. Dalton Trans. 2021, 50, 7984-7994. DOI: https://doi.org/10.1039/D0DT03887C
Guo, F.; Zhang, X. Dalton Trans. 2020, 49, 9935-9947. DOI: https://doi.org/10.1039/D0DT01516D
Beyzavi, M. H.; Stephenson, C. J.; Liu, Y.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. Front. Energy Res. 2015, 2, 1-10. DOI: https://doi.org/10.3389/fenrg.2014.00063
Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett, C. A.; Ton, Q. T.; Gutierrez-Puebla, E.; Monge, M. Á.; Cordova, K. E.; Gándara, F. ACS Appl. Mater. Interf. 2018, 10, 733-744. DOI: https://doi.org/10.1021/acsami.7b16163
Luo, R.; Yang, Y.; Chen, K.; Liu, X.; Chen, M.; Xu, W.; Liu, B.; Ji, H.; Fang, Y. J. Mater. Chem. A 2021, 9, 20941-20956. DOI: https://doi.org/10.1039/D1TA05428G
Zhi, Y.; Shao, P.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. J. Mater. Chem. A 2018, 6, 374-382. DOI: https://doi.org/10.1039/C7TA08629F
Baalbaki, H. A.; Roshandel, H.; Hein, J. E.; Mehrkhodavandi, P. Catal. Sci. Technol. 2021, 11, 2119-2129. DOI: https://doi.org/10.1039/D0CY02028A
Keshri, K. S.; Bhattacharjee, S.; Singha, A.; Bhaumik, A.; Chowdhury, B. Mol. Catal. 2022, 522, 112234. DOI: https://doi.org/10.1016/j.mcat.2022.112234
Guo, C. H.; Liang, M.; Jiao, H. Catal. Sci. Technol. 2021, 11, 2529-2539. DOI: https://doi.org/10.1039/D0CY02256J
Takaishi, K.; Okuyama, T.; Kadosaki, S.; Uchiyama, M.; Ema, T. Org. Lett. 2019, 21, 1397-1401. DOI: https://doi.org/10.1021/acs.orglett.9b00117
Tong, H.; Qu, Y.; Li, Z.; He, J.; Zou, X.; Zhou, Y.; Duan, T.; Liu, B.; Sun, J.; Guo, K. Chem. Eng. J. 2022, 444, 135478. DOI: https://doi.org/10.1016/j.cej.2022.135478
More, G. S.; Srivastava, R. Sustain. Energy Fuels. 2021, 5, 1498-1510. DOI: https://doi.org/10.1039/D0SE01912G
Valenzuela, M. L.; MacLeod‑Carey, D.; Marfull, C. S.; León‑Baeza, J.; Martínez, J.; Antiñolo, A.; Carrillo, F. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1724-1735. DOI: https://doi.org/10.1007/s10904-022-02264-6
Song, Q. W.; He, L. N.; Wang, J. Q.; Yasuda, H.; Sakakura, T. Green Chem. 2013, 15, 110-115. DOI: https://doi.org/10.1039/C2GC36210D
Schoepff, L.; Monnereau, L.; Durot, S.; Jenni, S.; Gourlaouen, C.; Heitz, V. ChemCatChem. 2020, 12, 5826-5833. DOI: https://doi.org/10.1002/cctc.202001176
Haq, I. U.; Qasim, A.; Lal1, B.; Zaini, D. B.; Foo, K. S.; Mubashir, M.; Khoo, K. S.; Vo, D. V. N.; Leroy, E.; Show, P. L. Environ. Chem. Lett. 2022, 20, 2165-2188. DOI: https://doi.org/10.1007/s10311-021-01359-9
Fabre, E.; Murshed, S. M. S. J. Mater. Chem. A 2021, 9, 15861-15879. DOI: https://doi.org/10.1039/D1TA03656D
Yan, J.; Mangolini, F. RSC Adv. 2021, 11, 36273-36288. DOI: https://doi.org/10.1039/D1RA05034F
Portillo-Castillo, O. J.; Castro-Ríos, R.; Chávez-Montes, A.; González-Horta, A.; Cavazos-Rocha, N.; Granados-Guzmán, G.; de Torres, N. W.; Garza-Tapia, M. J. Mex. Chem. Soc. 2022, 66, 198-220. DOI: https://doi.org/10.29356/jmcs.v66i2.1693
Martínez-Palou, R. J. Mex. Chem. Soc. 2007, 51, 252-264.
Yan, R.; Chen, K.; Li, Z.; Qu, Y.; Gao, L.; Tong, H.; Li, Y.; Li, J.; Hu, Y.; Guo, K. ChemSusChem. 2021, 14, 738-744. DOI: https://doi.org/10.1002/cssc.202002525
Zhang, J.; Li, X.; Zhu, Z.; Chang, T.; Fu, X.; Hao, Y.; Meng, X.; Panchal, B.; Qin, S. Adv. Sustain. Syst. 2021, 5, 2000133. DOI: https://doi.org/10.1002/adsu.202000133
Ebrahimi, A.; Rezazadeh, M.; Khosravi, H.; Rostami, A.; Al-Harrasi, A. ChemPlusChem. 2020, 85, 1587-1595. DOI: https://doi.org/10.1002/cplu.202000367
Logemann, M.; Marinkovic, J. M.; Schörner, M.; García-Suárez, E. J.; Hecht, C.; Franke, R.; Wessling, M.; Riisager, A.; Fehrmann, R.; Haumann, M. Green Chem. 2020, 22, 5691-5700. DOI: https://doi.org/10.1039/D0GC01483D
Selvam, T.; Machoke, A.; Schwieger, W. Appl. Catal. A: Gen. 2012, 445-446, 92-101. DOI: https://doi.org/10.1016/j.apcata.2012.08.007
Cao, Y.; Zhou, H.; Li, J. Renew. Sustain. Energy Rev. 2016, 58, 871-875. DOI: https://doi.org/10.1016/j.rser.2015.12.237
Xia, S. P.; Ding, G. R.; Zhang, R.; Han, L. J.; Xu, B. H.; Zhang, S. J. Green Chem. 2021, 23, 3073-3080. DOI: https://doi.org/10.1039/D0GC04386A
Gandhi, S.; Sethuraman, S.; Krishnan, U. M. Dalton Trans. 2012, 41, 12530-12537. DOI: https://doi.org/10.1039/c2dt30853c
Mdlovu, N. V.; Lin, K. S.; Weng, M. T.; Hsieh, C. C.; Lin, Y. S.; Espinoza, M. J. C. J. Ind. Eng. Chem. 2021, 102, 1-16. DOI: https://doi.org/10.1016/j.jiec.2021.06.004
Ehsanimehr, S.; Moghadam, P. N.; Dehaen, W.; Shafiei-Irannejad, V. Colloid. Surface. A. 2021, 615, 126302. DOI: https://doi.org/10.1016/j.colsurfa.2021.126302
Laskowska, M.; Bałanda, M.; Fitta, M.; Dulski, M.; Zubko, M.; Pawlik, P.; Laskowski, Ł. J. Magnet. Magnet. Mater. 2019, 478, 20-27. DOI: https://doi.org/10.1016/j.jmmm.2019.01.082
Karimi, B.; Tavakolian, M.; Akbari, M.; Mansouri, F. ChemCatChem. 2018, 10, 3173-3205. DOI: https://doi.org/10.1002/cctc.201701919
Arora, G.; Yadav, M.; Gaur, R.; Gupta, R.; Yadav, P.; Dixit, R.; Sharma, R. K. Nanoscale. 2021, 13, 10967-11003. DOI: https://doi.org/10.1039/D1NR01010G
Liu, S.; Yue, B.; Jiao, K.; Zhou, Y.; He, H. Mater. Lett. 2006, 60, 154-158. DOI: https://doi.org/10.1016/j.matlet.2005.08.008
Sang, C.; Jin, S.; Li, G.; Luo, Y. J. Sol-Gel Sci. Technol. 2021, 98, 559-567. DOI: https://doi.org/10.1007/s10971-021-05509-x
Zhao, Q.; Long, M.; Li, H.; Wen, Q.; Li, D. New J. Chem. 2022, 46, 1144-1157. DOI: https://doi.org/10.1039/D1NJ04712D
Chen, X.; Wang, P.; Xu, J.; Han, Y.; Jin, H.; Jin, D.; Peng, X.; Hong, B.; Li, J.; Yang, Y.; Ge, H.; Wang, X. Adv. Powder Technol. 2017, 28, 2087-2093. DOI: https://doi.org/10.1016/j.apt.2017.05.015
Jiang, H.; Xu, X.; Zhang, R.; Zhang, Y.; Chen, J.; Yang, F. RSC Adv. 2020, 10, 5116-5128. DOI: https://doi.org/10.1039/C9RA10601D


Downloads
Published
Issue
Section
License
Copyright (c) 2024 hu yulin, Sun Zhi Guo, Liu Xiao Bing

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
