Novel and Reusable Magnetic Zinc Ferrites Modified SBA-15 Supported Ionic Liquids for Sustainable and Efficient Cycloaddition of CO2 and Epoxides to Cyclic Carbonates

Authors

  • Hu Yu Lin Anshun University
  • Sun Zhi Guo Anshun University
  • Liu Xiao Bing Jinggangshan University

DOI:

https://doi.org/10.29356/jmcs.v68i3.1824

Keywords:

Supported ionic liquid, magnetic zinc ferrites modified SBA-15, cycloaddition, cyclic carbonates, carbon dioxide

Abstract

Abstract. A type of magnetic zinc ferrites modified SBA-15 supported ionic liquids have been synthesized and evaluated as effective catalysts for the synthesis of cyclic carbonates from epoxides and CO2. The effects of catalysts, CO2 pressure, reaction temperature, and catalyst stability have also been investigated, the catalyst ZnFe2O4@SBA-15-ILVO3 exhibited excellent activity in high to excellent yields (87~98 %) with excellent selectivities (98~99.7 %). Moreover, the catalyst exhibited excellent stability and could be easily recovered and reused for five times without a considerable decrease in catalytic activity. This work provides a sustainable and efficient strategy for the chemical fixation of carbon dioxide into valuable cyclic carbonates.

 

Resumen. Se sintetizó y evaluó un líquido iónico soportado tipo ferrita de zinc magnética modificada SBA-15 como un catalizador efectivo para la síntesis de carbonatos cíclicos a partir de epóxidos y CO2. Se investigaron los efectos del catalizador, el CO2, la presión, la temperatura de reacción y la estabilidad del catalizador; el catalizador ZnFe2O4@SBA-15-ILVO3 mostró una excelente actividad con rendimientos de altos a excelentes (87~98 %), así como excelentes selectividades. Adicionalmente, el catalizador mostró tener una excelente estabilidad, y se logró recuperar y reutilizar fácilmente en cinco ocasiones sin mostrar un decremento importante en su actividad catalítica. Este trabajo proporciona una estrategia sostenible y eficiente para la transformación química de dióxido de carbono en carbonatos cíclicos de alto valor.

Downloads

Download data is not yet available.

Author Biographies

Hu Yu Lin, Anshun University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials

Sun Zhi Guo, Anshun University

College of Chemistry and Chemical Engineering

Liu Xiao Bing, Jinggangshan University

College of Chemistry and Chemical Engineering

References

Ji, Y.; Xu J.; Sun H.; Liu, J. Chem. Res. Chin. Univ. 2022, 38, 688-697. DOI: https://doi.org/10.1007/s40242-022-2045-6

Kassim, M. A.; Meng, T. K. Sci. Total Environ. 2017, 584-585, 1121-1129. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.172

Wang, B.; Liu, J.; Yao, S.; Liu, F.; Li, Y.; He, J.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. J. Mater. Chem. A 2021, 9, 17143-17172. DOI: https://doi.org/10.1039/D1TA03895H

Jelmy, E. J.; Thomas, N.; Mathew, D. T.; Louis, J.; Padmanabhan, N. T.; Kumaravel, V.; John, H.; Pillai, S. C. React. Chem. Eng. 2021, 6, 1701-1738. DOI: https://doi.org/10.1039/D1RE00214G

Sable, D. A.; Vadagaonkar, K. S.; Kapdi, A. R.; Bhanage, B. M. Org. Biomol. Chem. 2021, 19, 5725-5757. DOI: https://doi.org/10.1039/D1OB00755F

Lopes, E. J. C.; Ribeiro, A. P. C.; Martins, L. M.D.R.S. Catalysts. 2020, 10, 479. DOI: https://doi.org/10.3390/catal10050479

Zhou, F.; Deng, Q.; Huang, N.; Zhou, W.; Deng, W. ChemistrySelect. 2020, 5, 10516-10520. DOI: https://doi.org/10.1002/slct.202001538

İkiz, M.; İspir, E.; Aytar, E.; Ulusoy, M.; Karabuğa, Ş.; Aslantaş, M.; Çelik, Ö. New J. Chem. 2015, 39, 7786-7796. DOI: https://doi.org/10.1039/C5NJ00571J

Muthuramalingam, S.; Velusamy, M.; Mayilmurugan, R. Dalton Trans. 2021, 50, 7984-7994. DOI: https://doi.org/10.1039/D0DT03887C

Guo, F.; Zhang, X. Dalton Trans. 2020, 49, 9935-9947. DOI: https://doi.org/10.1039/D0DT01516D

Beyzavi, M. H.; Stephenson, C. J.; Liu, Y.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. Front. Energy Res. 2015, 2, 1-10. DOI: https://doi.org/10.3389/fenrg.2014.00063

Nguyen, P. T. K.; Nguyen, H. T. D.; Nguyen, H. N.; Trickett, C. A.; Ton, Q. T.; Gutierrez-Puebla, E.; Monge, M. Á.; Cordova, K. E.; Gándara, F. ACS Appl. Mater. Interf. 2018, 10, 733-744. DOI: https://doi.org/10.1021/acsami.7b16163

Luo, R.; Yang, Y.; Chen, K.; Liu, X.; Chen, M.; Xu, W.; Liu, B.; Ji, H.; Fang, Y. J. Mater. Chem. A 2021, 9, 20941-20956. DOI: https://doi.org/10.1039/D1TA05428G

Zhi, Y.; Shao, P.; Feng, X.; Xia, H.; Zhang, Y.; Shi, Z.; Mu, Y.; Liu, X. J. Mater. Chem. A 2018, 6, 374-382. DOI: https://doi.org/10.1039/C7TA08629F

Baalbaki, H. A.; Roshandel, H.; Hein, J. E.; Mehrkhodavandi, P. Catal. Sci. Technol. 2021, 11, 2119-2129. DOI: https://doi.org/10.1039/D0CY02028A

Keshri, K. S.; Bhattacharjee, S.; Singha, A.; Bhaumik, A.; Chowdhury, B. Mol. Catal. 2022, 522, 112234. DOI: https://doi.org/10.1016/j.mcat.2022.112234

Guo, C. H.; Liang, M.; Jiao, H. Catal. Sci. Technol. 2021, 11, 2529-2539. DOI: https://doi.org/10.1039/D0CY02256J

Takaishi, K.; Okuyama, T.; Kadosaki, S.; Uchiyama, M.; Ema, T. Org. Lett. 2019, 21, 1397-1401. DOI: https://doi.org/10.1021/acs.orglett.9b00117

Tong, H.; Qu, Y.; Li, Z.; He, J.; Zou, X.; Zhou, Y.; Duan, T.; Liu, B.; Sun, J.; Guo, K. Chem. Eng. J. 2022, 444, 135478. DOI: https://doi.org/10.1016/j.cej.2022.135478

More, G. S.; Srivastava, R. Sustain. Energy Fuels. 2021, 5, 1498-1510. DOI: https://doi.org/10.1039/D0SE01912G

Valenzuela, M. L.; MacLeod‑Carey, D.; Marfull, C. S.; León‑Baeza, J.; Martínez, J.; Antiñolo, A.; Carrillo, F. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1724-1735. DOI: https://doi.org/10.1007/s10904-022-02264-6

Song, Q. W.; He, L. N.; Wang, J. Q.; Yasuda, H.; Sakakura, T. Green Chem. 2013, 15, 110-115. DOI: https://doi.org/10.1039/C2GC36210D

Schoepff, L.; Monnereau, L.; Durot, S.; Jenni, S.; Gourlaouen, C.; Heitz, V. ChemCatChem. 2020, 12, 5826-5833. DOI: https://doi.org/10.1002/cctc.202001176

Haq, I. U.; Qasim, A.; Lal1, B.; Zaini, D. B.; Foo, K. S.; Mubashir, M.; Khoo, K. S.; Vo, D. V. N.; Leroy, E.; Show, P. L. Environ. Chem. Lett. 2022, 20, 2165-2188. DOI: https://doi.org/10.1007/s10311-021-01359-9

Fabre, E.; Murshed, S. M. S. J. Mater. Chem. A 2021, 9, 15861-15879. DOI: https://doi.org/10.1039/D1TA03656D

Yan, J.; Mangolini, F. RSC Adv. 2021, 11, 36273-36288. DOI: https://doi.org/10.1039/D1RA05034F

Portillo-Castillo, O. J.; Castro-Ríos, R.; Chávez-Montes, A.; González-Horta, A.; Cavazos-Rocha, N.; Granados-Guzmán, G.; de Torres, N. W.; Garza-Tapia, M. J. Mex. Chem. Soc. 2022, 66, 198-220. DOI: https://doi.org/10.29356/jmcs.v66i2.1693

Martínez-Palou, R. J. Mex. Chem. Soc. 2007, 51, 252-264.

Yan, R.; Chen, K.; Li, Z.; Qu, Y.; Gao, L.; Tong, H.; Li, Y.; Li, J.; Hu, Y.; Guo, K. ChemSusChem. 2021, 14, 738-744. DOI: https://doi.org/10.1002/cssc.202002525

Zhang, J.; Li, X.; Zhu, Z.; Chang, T.; Fu, X.; Hao, Y.; Meng, X.; Panchal, B.; Qin, S. Adv. Sustain. Syst. 2021, 5, 2000133. DOI: https://doi.org/10.1002/adsu.202000133

Ebrahimi, A.; Rezazadeh, M.; Khosravi, H.; Rostami, A.; Al-Harrasi, A. ChemPlusChem. 2020, 85, 1587-1595. DOI: https://doi.org/10.1002/cplu.202000367

Logemann, M.; Marinkovic, J. M.; Schörner, M.; García-Suárez, E. J.; Hecht, C.; Franke, R.; Wessling, M.; Riisager, A.; Fehrmann, R.; Haumann, M. Green Chem. 2020, 22, 5691-5700. DOI: https://doi.org/10.1039/D0GC01483D

Selvam, T.; Machoke, A.; Schwieger, W. Appl. Catal. A: Gen. 2012, 445-446, 92-101. DOI: https://doi.org/10.1016/j.apcata.2012.08.007

Cao, Y.; Zhou, H.; Li, J. Renew. Sustain. Energy Rev. 2016, 58, 871-875. DOI: https://doi.org/10.1016/j.rser.2015.12.237

Xia, S. P.; Ding, G. R.; Zhang, R.; Han, L. J.; Xu, B. H.; Zhang, S. J. Green Chem. 2021, 23, 3073-3080. DOI: https://doi.org/10.1039/D0GC04386A

Gandhi, S.; Sethuraman, S.; Krishnan, U. M. Dalton Trans. 2012, 41, 12530-12537. DOI: https://doi.org/10.1039/c2dt30853c

Mdlovu, N. V.; Lin, K. S.; Weng, M. T.; Hsieh, C. C.; Lin, Y. S.; Espinoza, M. J. C. J. Ind. Eng. Chem. 2021, 102, 1-16. DOI: https://doi.org/10.1016/j.jiec.2021.06.004

Ehsanimehr, S.; Moghadam, P. N.; Dehaen, W.; Shafiei-Irannejad, V. Colloid. Surface. A. 2021, 615, 126302. DOI: https://doi.org/10.1016/j.colsurfa.2021.126302

Laskowska, M.; Bałanda, M.; Fitta, M.; Dulski, M.; Zubko, M.; Pawlik, P.; Laskowski, Ł. J. Magnet. Magnet. Mater. 2019, 478, 20-27. DOI: https://doi.org/10.1016/j.jmmm.2019.01.082

Karimi, B.; Tavakolian, M.; Akbari, M.; Mansouri, F. ChemCatChem. 2018, 10, 3173-3205. DOI: https://doi.org/10.1002/cctc.201701919

Arora, G.; Yadav, M.; Gaur, R.; Gupta, R.; Yadav, P.; Dixit, R.; Sharma, R. K. Nanoscale. 2021, 13, 10967-11003. DOI: https://doi.org/10.1039/D1NR01010G

Liu, S.; Yue, B.; Jiao, K.; Zhou, Y.; He, H. Mater. Lett. 2006, 60, 154-158. DOI: https://doi.org/10.1016/j.matlet.2005.08.008

Sang, C.; Jin, S.; Li, G.; Luo, Y. J. Sol-Gel Sci. Technol. 2021, 98, 559-567. DOI: https://doi.org/10.1007/s10971-021-05509-x

Zhao, Q.; Long, M.; Li, H.; Wen, Q.; Li, D. New J. Chem. 2022, 46, 1144-1157. DOI: https://doi.org/10.1039/D1NJ04712D

Chen, X.; Wang, P.; Xu, J.; Han, Y.; Jin, H.; Jin, D.; Peng, X.; Hong, B.; Li, J.; Yang, Y.; Ge, H.; Wang, X. Adv. Powder Technol. 2017, 28, 2087-2093. DOI: https://doi.org/10.1016/j.apt.2017.05.015

Jiang, H.; Xu, X.; Zhang, R.; Zhang, Y.; Chen, J.; Yang, F. RSC Adv. 2020, 10, 5116-5128. DOI: https://doi.org/10.1039/C9RA10601D

×

Downloads

Published

2024-04-23

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...