Effect of Bathocuproine Concentration on the Photovoltaic Performance of NiOx-Based Perovskite Solar Cells
DOI:
https://doi.org/10.29356/jmcs.v65i2.1461Keywords:
Bathocuproine, hole-blocking layer, electron transport layer, planar structureAbstract
Abstract. Bathocuproine (BCP) (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) is a well-known material that is employed as a hole-blocking layer between electron transport layer (ETL) and metal electrode in perovskite solar cells. It has been demonstrated that the use of BCP as a buffer layer between the ETL and the metal electrode in perovskite solar cells is highly beneficial. In literature, BCP is coated using vacuum processing techniques. Vacuum processing techniques require more energy and cost-effective processing conditions. In this work, we used BCP layers processed through wet processing techniques using sol-gel method with different concentrations. We achieved a short circuit current density (Jsc) of 16.1 mA/cm2 and an open circuit voltage (Voc) of 875 mV were acquired and a fill factor (FF) of 0.37 was calculated for perovskite solar cells without a BCP layer leading to a power conversion efficiency (PCE) of 5.32 % whereas Jsc of 19 mA/cm2, Voc of 990 mV were achieved and a FF of 0.5 was calculated for perovskite solar cells employing BCP layers with concentration of 0.5 mg/ml and spin cast at 4000 rpm, leading to a PCE of 9.4 %. It has been observed that the use of a BCP layer with an optimized concentration led to an improved device performance with an increase of 77 % in PCE in ambient air under high humidity conditions for planar structure perovskite solar cells in the configuration of ITO/NiOx/MAPbI3/PCBM/BCP/Ag.
Resumen. Batocuproina (BCP) (2,9-dimetil-4,7-difenil-1,10-fenantrolina) es un material que se emplea como capa de bloqueo de huecos entre la capa transportadora de electrones (ETL) y el electrodo metálico en celdas solares basados en perovskitas. Se ha demostrado que el uso de BCP como capa amortiguadora entre el ETL y el electrodo metálico en las celdas solares de perovskita es beneficioso. Comúnmente el BCP se recubre mediante técnicas de procesamiento al vacío, las cuales requieren altos costos energéticos. En este trabajo utilizamos capas de BCP procesadas mediante técnicas de procesamiento húmedo utilizando el método sol-gel. Logramos una densidad de corriente de cortocircuito (Jsc) de 16.1 mA / cm2 y un voltaje de circuito abierto (Voc) de 875 mV y se calculó un factor de llenado (FF) de 0.37 para las celdas solares de perovskita sin una capa de BCP lo que conduce a una eficiencia de conversión de energía (PCE) de 5.32%. Para celdas solares de perovskita que emplean capas de BCP con concentración de 0.5 mg/ml y centrifugado a 4000 rpm el valor de Jsc fue de 19 mA / cm2, se lograron Voc de 990 mV y se calculó un FF de 0.5, lo que lleva a un PCE del 9,4%. Se observó que el uso de una capa de BCP con concentración optimizada puede conducir a un rendimiento mejorado del dispositivo con un aumento del 77% en PCE en el aire ambiente, en condiciones de alta humedad, para celdas solares de perovskita de estructura plana en la configuración de ITO / NiOx / MAPbI3 / PCBM / BCP / Ag.
Downloads
References
Chen, H.; Yang, S. Adv. Mater. 2017, 29, 1603994. DOI: https://doi.org/10.1002/adma.201770143
Shin, G. S.; Choi, W.-G.; Na, S.; Gokdemir, F. P.; Moon, T. Electron.. Mater. Lett. 2018, 14, 155-160 DOI: https://doi.org/10.1007/s13391-018-0042-1
Huanping, Z.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542-546. DOI: https://doi.org/10.1126/science.1254050
Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Science 2016, 352, 6283. DOI: https://doi.org/10.1126/science.aad4424
Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science, 2012, 338, 643-647. DOI: https://doi.org/10.1126/science.1228604
Brites, M. J.; Barreiros, M. A.; Corregidor, V.; Alves, L. C.; Pinto, J. V.; Mendes, M.J.; Fortunato, E.; Martins, R.; Mascarenhas, J. ACS Appl. Energy Mater. 2019, 2, 1844-1853. DOI: https://doi.org/10.1021/acsaem.8b02005
Laban, W. A.; Etgar, L. Energy Environ. Sci. 2013, 6, 3249-3253. DOI: https://doi.org/10.1039/c3ee42282h
Seigo, I. APL Mater. 2016, 4, 091504.
Jacoby, M. Chem. Eng. News 2016, 94, 30-35.
Miyasaka, T. Bull. Chem. Soc. Jpn 2018, 91, 1058-1068. DOI: https://doi.org/10.1246/bcsj.20180071
Wiley, A. D.-S.; Zhou, Y.; P. Padture, N.; Mitzi, D. B. Chem. Rev. 2018, 119, 3193-3295. DOI: https://doi.org/10.1021/acs.chemrev.8b00318
Alishah, H. M.; Kazici, M.; Ongul, F.; Bozar, S.; Canturk Rodop, M.; Kahveci,, C.; Arvas M. B.; Sahin, Y.; Gencten, M.; Kaleli, M.; Akyurekli, S.; Yilmaz, H. U.; Bayram, A. B.; Gunes, S. J. Mater. Sci.: Mater. Electr. 2020, 1-13.
Dericiler, K.; Alishah, H. M.; Bozar, S; Gunes, S; Kaya, F. Appl. Phys. A 2020, 126, 1-9. DOI: https://doi.org/10.1007/s00339-020-04091-3
Choi, F. P. G.; Alishah, H. M.; Bozar, S.; Doyranli, C.; Koyuncu, S.; San, N.; Kahveci, C.; Rodop, M. C.; Arvas, M. B.; Gencten, M.; Sahin, Y.; Gunes, S. Sol. Energy 2020, 209, 400-407. DOI: https://doi.org/10.1016/j.solener.2020.08.013
Chen, W.; Liu, F.?Z.; Feng, X.?Y.; Djuriši?, A. B.; Chan, W. K.; He, Z.?B. Adv. Energy Mater. 2017, 7,1700722. DOI: https://doi.org/10.1002/aenm.201770109
Sajid, S.; Elseman, A. M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Nano Energy 2018, 51, 408-424. DOI: https://doi.org/10.1016/j.nanoen.2018.06.082
Jeng, J.?Y.; Chiang, Y.?F.; Lee, M.?H.; Peng, S.?R.; Guo, T.?F.; Chen, P.; Ten?Chin, W. Adv. Mater. 2013, 25, 3727-3732. DOI: https://doi.org/10.1002/adma.201301327
Shibayama N.; Kanda H.; Kim T. W.; Segawa H.; Ito S. APL Materials, 2019, 7.3: 031117. DOI: https://doi.org/10.1063/1.5087796
Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W., RSC Adv. 2017, 7, 35819-35826.
Patil, B. R.; Ahmadpour, M.; Sherafatipour, G.; Qamar, T.; Fernández, A. F.; Zojer, K.; Rubahn, H.-G.; Madsen, M. Sci. Rep. 2018, 8, 1-9. DOI: https://doi.org/10.1038/s41598-018-30826-7
Seo, J.; Park, S.; Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yoon, S. C.; Seok, S. I. Energy Environ. Sci. 2014, 7, 2642-2646. DOI: https://doi.org/10.1039/C4EE01216J
Liu, X.; Yu, H.; Yan, L.; Dong, Q.; Wan, Q.; Zhou, Y.; Song, B.; Li, Y. ACS Appl. Mater. Interfaces 2015, 7.11: 6230-6237. DOI: https://doi.org/10.1021/acsami.5b00468
Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. Nanoscale 2015, 7, 1642-1649. DOI: https://doi.org/10.1039/C4NR06033D
He, C.; Zhang, F.; Zhao, X.; Lin, C.; Ye, M. Front. Phys. 2018, 6, 99. DOI: https://doi.org/10.3389/fphy.2018.00099
Wang, Q.; Shao, Y.; Dong, Q.; Xiao, Z.; Yuan, Y.; Huang, J. Energy Environ. Sci. 2014, 2359-2365. DOI: https://doi.org/10.1039/C4EE00233D
Hanmandlu, C.; Chen, C. Y.; Boopathi, K. M.; Lin, H. W.; Lai, C. S.; Chu, C. W. ACS Appl. Mater. Interfaces 2017, 9, 32635-32642. DOI: https://doi.org/10.1021/acsami.7b06607
Babaei, A.; Dreessen, C.; Sessolo, M.; Bolink, H. J. RSC Adv. 2020, 10, 6640-6646. DOI: https://doi.org/10.1039/D0RA00214C
Wang, Y.; Zhang, J.; Wu, Y.; Yi, Z.; Chi, F.; Wong, H.; Li, W.; Zhang, Y.; Zhang, X.; Liu, L. Semicond. Sci. Technol. 2019, 34, 075023. DOI: https://doi.org/10.1088/1361-6641/ab2309
Yuan, D. X.; Yuan , X. D.; Xu, Q. Y.; Xu, M. F.; Shi, X. B.; Wang, Z. K.; Liao, L. S. Phys. Chem. Chem. Phys. 2015, 17, 26653-26658. DOI: https://doi.org/10.1039/C5CP03995A
Di Girolamo, D.; Matteocci, F.; Lamanna, E.; Calabrò, E.; Di Carlo, A.; Dini, D. AIP Conf. Proc. 2018, 1990, 020011.
Wang, T.; Ding, D.; Zheng, H.; Wang, X.; Wang, J.; Liu, H.; Shen, W. Solar RRL, 2019, 3, 1900045. DOI: https://doi.org/10.1002/solr.201900045
Guo, X.; McCleese, C.; Kolodziej, C.; Samia, A. CS; Zhao, Y.; Burda, C. Dalton Trans. 2016, 45, 3806-3813. DOI: https://doi.org/10.1039/C5DT04420K
Leguy, A. M. A. ; Azarhoosh, P.; Alonso, M. I.; Campoy-Quiles, M.; Weber, O. J.; Yao, J.; Bryant, D; Weller, M..T; Nelson, J; Walsh, A; Schilfgaarde, M.V; Barnes, P.R.F. Nanoscale 2016, 8, 6317-6327. DOI: https://doi.org/10.1039/C5NR05435D
Quarti, C.; Mosconi, E.; Ball, J. M.; D'Innocenzo, V.; Tao, C.; Pathak, S.; Snaith, H. J.; Petrozza, A.; Angelis, F. D. Energy Environ. Sci. 2016, 9, 155-163. DOI: https://doi.org/10.1039/C5EE02925B
Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051. DOI: https://doi.org/10.1021/ja809598r
Patel, J. B.; Milot, R. L.; Wright, A. D.; Herz, L. M.; Johnston, M. B. J. Phys. Chem. Lett. 2016, 7, 96-102. DOI: https://doi.org/10.1021/acs.jpclett.5b02495
Pérez-Osorio, M. A.; Milot, R. L.; Filip, M. R.; Patel, J. B.; Herz, L. M.; Johnston, M. B.; Giustino, F. J. Phys. Chem. C 2015, 119, 25703-25718. DOI: https://doi.org/10.1021/acs.jpcc.5b07432
Hu, H.; Kollek, T.; Hanusch, F.; Polarz, S.; Docampo, P.; Schmiidt-Mende, L. Molecules 2016, 21, 542. DOI: https://doi.org/10.3390/molecules21040542
Chen, C.; Zhang, S.; Wu, S.; Zhang, W.; Zhu, H.; Xiong, Z.; Zhang, Y.; Chen, W. RSC Adv. 2017, 7, 35819-35826. DOI: https://doi.org/10.1039/C7RA06365B
Yan, K.; Wei, Z.; Li, J.; Chen, H.; Yi, Y.; Zheng, X.; Long, X; Wang, Z; Wang, J; Xu, J; Yang, S. Small 2015, 11, 2269-2274. DOI: https://doi.org/10.1002/smll.201403348
Yimsiri, P.; Mackley, M. R. Chem. Eng. Sci. 2006, 61, 3496-3505. DOI: https://doi.org/10.1016/j.ces.2005.12.018
Calleja, A.; Ricart, S.; Aklalouch, M.; Mestres, N.; Puig, T.; Obradors, X. J. Sol-Gel Sci.Technol. 2014, 72, 21-29. DOI: https://doi.org/10.1007/s10971-014-3417-2
Dong, J.; Xu, X.; Shi, J.-J.; Li, D.-M.; Luo, Y.-H.; Meng, Q.-B.; Chen, Q. Chin. Phys. Lett. 2015, 32, 078401. DOI: https://doi.org/10.1088/0256-307X/32/7/078401
Wu, X.; Li, H.; Wang, K.; Sun, X.; Wang, L. RSC Adv. 2018, 8, 11095-11101. DOI: https://doi.org/10.1039/C7RA12754E
Zhu, W.; Kang, L.; Yu, T.; Lv, B.; Wang, Y.; Chen, X.; Wang, X,; Zhou, Y.; Zou, Z., ACS Appl. Mater. Interfaces 2017, 9, 6104-6113. DOI: https://doi.org/10.1021/acsami.6b15563
Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. J. Am. Chem. Soc. 2014, 136, 11610-11613. DOI: https://doi.org/10.1021/ja506624n
Han, G.S.; Chung, H.S.; Kim, B.J.; Kim, D.H.; Lee, J.W.; Swain, B.S.; Mahmood, K.; Yoo, J. S.; Park, N.-G.; Lee, J.H.; Jung, H.S. J. Mater. Chem. A, 2015, 3, 9160-9164. DOI: https://doi.org/10.1039/C4TA03684K


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
