Ascorbic Acid in Chili Pepper Fruits: Biosynthesis, Accumulation, and Factors Affecting its Content
DOI:
https://doi.org/10.29356/jmcs.v67i3.2003Palabras clave:
Capsicum, chili pepper, ascorbic acid, vitamin C, antioxidantResumen
Abstract. Chili pepper fruits are important sources of bioactive compounds e.g., capsaicinoids, carotenoids, ascorbic acid, flavonoids, phenolic compounds, and minerals. From them, chili pepper fruits synthesize and accumulate important concentrations of ascorbic acid (AsA) (also known as vitamin C). AsA has an important role as a free-radical scavenger and as an effective antioxidant. In plants, AsA develops crucial functions for the homeostasis maintenance of the cells, whereas, in animals, AsA is very important for cellular metabolism too. Because of humans and some animal species are incapable of synthesizing AsA, they must acquire it from vegetable food, and chili pepper fruits represent an excellent option for vitamin C uptake. In this review, we integrate the latest biological advances of the research about vitamin C in chili pepper fruits including biosynthesis, accumulation, and the effects of agricultural practices and postharvest storage.
Resumen. El chile es una fuente muy importante de compuestos bioactivos (capsaicinoides, carotenoidess, ácido ascórbico, flavonoides, compuestos fenólicos y minerales). De éstos, el chile contiene concentraciones muy importantes de ácido ascóbico (AsA) (también conocido como vitamina C). El AsA tiene un importante papel en la eliminación de radicales libres y es un antioxidante muy efectivo. En plantas, el AsA lleva a cabo funciones cruciales para el mantenimiento de la homeostasis celular, mientras que, en animales, el AsA es muy importante para el metabolismo celular. Debido a que los humanos y algunas especies animales son incapaces de sintetizarlo, ellos deben adquirirlo a partir de alimentos de origen vegetal, siendo los frutos de chile una excelente fuente de vitamina C. En esta revisión, se integran los avances más recientes acerca de la investigación de la vitamina C, su ruta de biosíntesis, su contenido en frutos de chile y, finalmente, el efecto de diferentes factores como el manejo agrícola y el procesamiento de frutos de Capsicum sobre el contenido de AsA.
Descargas
Citas
Badia, A. D.; Spina, A.A.; Vassalotti, G. J. Nut. Ecol. Food Res. 2017, 4, 167-177. DOI: 10.1166/jnef.2017.1163 DOI: https://doi.org/10.1166/jnef.2017.1163
Jarret, R. L.; Barboza, G. E.; Costa Batista, F. R.d.; Berke, T.; Chou, Y.-Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Tripodi, P.; Veres, A.; Garcia, C. C.; Csillery, G.; Huang, Y.-K.; Kiss, E.; Kovacs, Z.; Kondrak, M.; Arce-Rodriguez, M.L.; Scaldaferro, M. A.; Szoke, A. J. Am. Soc. Hortic. Sci. 2019, 144, 3-22. DOI: 10.21273/jashs04446-18 DOI: https://doi.org/10.21273/JASHS04446-18
Chamikara, M. D. M.; Dissanayake, D. R. R. P.; Ishan, M.; Sooriyapathirana, S. D. S. S. Ceylon J. Sci. 2016, 45, 5-20 DOI: 10.4038/cjs.v45i3.7396 DOI: https://doi.org/10.4038/cjs.v45i3.7396
Sandoval-Castro, C.J.; Valdez-Morales, M.; Oomah, B.D.; Gutierrez-Dorado, R.; Medina-Godoy, S.; Espinosa-Alonso, L.G. J. Food Sci. Technol. 2017, 54, 1999-2010. DOI: 10.1007/s13197-017-2636-2 DOI: https://doi.org/10.1007/s13197-017-2636-2
Farhoudi, R.; Mehrnia, M.A.; Lee, D.J. Nat. Prod. Res. 2019, 33, 871-874. DOI: 10.1080/14786419.2017.1410801 DOI: https://doi.org/10.1080/14786419.2017.1410801
Baenas, N.; Belovic, M.; Ilic, N.; Moreno, D. A.; Garcia-Viguera, C. Food Chem. 2019, 274, 872-885. DOI: 10.1016/j.foodchem.2018.09.047 DOI: https://doi.org/10.1016/j.foodchem.2018.09.047
de Sá Mendes, N.; Branco de Andrade Gonçalves, É.C. Trends Food Sci. Technol. 2020, 99, 229-243. DOI: 10.1016/j.tifs.2020.02.032 DOI: https://doi.org/10.1016/j.tifs.2020.02.032
Martinez-Ispizua, E.; Martinez-Cuenca, M.R.; Marsal, J. I.; Diez, M. J.; Soler, S.; Valcarcel, J. V.; Calatayud, A. Molecules. 2021, 26, 1031 DOI: 10.3390/molecules26041031 DOI: https://doi.org/10.3390/molecules26041031
Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Free Radic. Biol. Med. 2020, 159, 37-43. DOI: 10.1016/j.freeradbiomed.2020.07.013 DOI: https://doi.org/10.1016/j.freeradbiomed.2020.07.013
Zhang, Y., in Ascorbic Acid in Plants, Springer, 2013, 1-6. DOI: 10.1007/978-1-4614-4127-4_1 DOI: https://doi.org/10.1007/978-1-4614-4127-4_1
Szent-Györgyi, A. Biochem J. 1928, 22, 1387-409. DOI: 10.1042/bj0221387 DOI: https://doi.org/10.1042/bj0221387
Machlin, L.J. Ann. N. Y. Acad. Sci. 1992, 669, 1-6. DOI: 10.1111/j.1749-6632.1992.tb17084.x DOI: https://doi.org/10.1111/j.1749-6632.1992.tb17084.x
Banga, I.; Szent-Györgyi, A. Biochem. J. 1934, 28, 1625-1628. DOI: 10.1042/bj0281625 DOI: https://doi.org/10.1042/bj0281625
Njus, D.; Kelley, P.M. FEBS Lett. 1991, 284, 147-151. DOI: 10.1016/0014-5793(91)80672-P DOI: https://doi.org/10.1016/0014-5793(91)80672-P
Drouin, G.; Godin, J.-R.; Page, B. Curr. Genomics. 2011, 12, 371-378. DOI: 10.2174/138920211796429736 DOI: https://doi.org/10.2174/138920211796429736
Perez-Balladares, D.; Castaneda-Teran, M.; Granda-Albuja, M. G.; Tejera, E.; Iturralde, G.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Plant Foods Hum. Nutr. 2019, 74, 350-357. DOI: 10.1007/s11130-019-00744-8 DOI: https://doi.org/10.1007/s11130-019-00744-8
Kantar, M. B.; Anderson, J. E.; Lucht, S.A.; Mercer, K.; Bernau, V.; Case, K. A.; Le, N. C.; Frederiksen, M. K.; DeKeyser, H. C.; Wong, Z. Z.; Hastings, J. C.; Baumler, D. J. PLoS One 2016, 11, e0161464. DOI: 10.1371/journal.pone.0161464 DOI: https://doi.org/10.1371/journal.pone.0161464
Valente, A.; Albuquerque, T. G.; Sanches-Silva, A.; Costa, H. S. Food Res. Int. 2011, 44, 2237-2242. DOI: 10.1016/j.foodres.2011.02.012 DOI: https://doi.org/10.1016/j.foodres.2011.02.012
Najwa, R.; Azlan, A. Int. Food Res. J. 2017, 24, 726-733.
Zhang, Y., in Ascorbic Acid in Plants, Springer, New York, 2013, 7-33. DOI: 10.1007/978-1-4614-4127-4_2 DOI: https://doi.org/10.1007/978-1-4614-4127-4_2
Magiorkinis, E.; Beloukas, A.; Diamantis, A. Eur. J. Intern. Med. 2011, 22, 147-152. DOI: 10.1016/j.ejim.2010.10.006 DOI: https://doi.org/10.1016/j.ejim.2010.10.006
Sanchez-Moreno, C.; Cano, M. P.; de Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martin, A. J. Nutr. Biochem. 2006, 17, 183-189. DOI: 10.1016/j.jnutbio.2005.07.001 DOI: https://doi.org/10.1016/j.jnutbio.2005.07.001
Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Eur. J. Microbiol. Immunol. 2019, 9, 73-79. DOI: 10.1556/1886.2019.00016 DOI: https://doi.org/10.1556/1886.2019.00016
Asai, A.; Nakagawa, K.; Miyazawa, T. Biosci. Biotechnol. Biochem. 1999, 63, 2118-2122. DOI: 10.1271/bbb.63.2118 DOI: https://doi.org/10.1271/bbb.63.2118
Chaitanya, N. C.; Muthukrishnan, A.; Krishnaprasad, C. M. S.; Sanjuprasanna, G.; Pillay, P.; Mounika, B. J. Pharm. Bioall. Sci. 2018, 10, 119-125. DOI: 10.4103/jpbs.JPBS_12_18 DOI: https://doi.org/10.4103/JPBS.JPBS_12_18
Shenoy, N.; Creagan, E.; Witzig, T.; Levine, M. Cancer Cell. 2018, 34, 700-706. DOI: 10.1016/j.ccell.2018.07.014 DOI: https://doi.org/10.1016/j.ccell.2018.07.014
Vissers, M. C. M.; Das, A.B. Front Physiol. 2018, 9, 809. DOI: 10.3389/fphys.2018.00809 DOI: https://doi.org/10.3389/fphys.2018.00809
van Gorkom, G. N. Y.; Lookermans, E. L.; Van Elssen, C.; Bos, G.M.J. Nutrients 2019, 11, 977. DOI: 10.3390/nu11050977 DOI: https://doi.org/10.3390/nu11050977
Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J. D.; Marik, P.E. Front. Immunol. 2020, 11, 1451. DOI: 10.3389/fimmu.2020.01451 DOI: https://doi.org/10.3389/fimmu.2020.01451
Moretti, M.; Fraga, D.B.; Rodrigues, A.L.S. CNS Drugs. 2017, 31, 571-583. DOI: 10.1007/s40263-017-0446-8 DOI: https://doi.org/10.1007/s40263-017-0446-8
Ravetti; C.; Brignone; H.; Allemandi. P. Cosmetics. 2019, 6, 58. DOI: 10.3390/cosmetics6040058 DOI: https://doi.org/10.3390/cosmetics6040058
Raghu, S. V.; Rao, S.; Kini, V.; Kudva, A. K.; George, T.; Baliga, M. S. Food Funct. 2023, 14, 1290-1319. DOI: 10.1039/d2fo01911f DOI: https://doi.org/10.1039/D2FO01911F
Smirnoff, N. Free Radic. Biol. Med. 2018, 122, 116-129. DOI: 10.1016/j.freeradbiomed.2018.03.033 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.03.033
Wheeler, G.; Ishikawa, T.; Pornsaksit, V.; Smirnoff, N. Elife 2015, 4, e06369. DOI: 10.7554/eLife.06369 DOI: https://doi.org/10.7554/eLife.06369
Wheeler, G. L.; Jones, M. A.; Smirnoff, N. Nature. 1998, 393, 365-369. DOI: 10.1038/30728 DOI: https://doi.org/10.1038/30728
Agius, F.; González-Lamothe, R.; Caballero, J. L.; Muñoz-Blanco, J.; Botella, M. A.; Valpuesta, V. Nat. Biotechnol. 2003, 21, 177-181. DOI: 10.1038/nbt777 DOI: https://doi.org/10.1038/nbt777
Lorence, A.; Chevone, B. I.; Mendes, P.; Nessler, C. L. Plant Physiol. 2004, 134, 1200-1205. DOI: 10.1104/pp.103.033936 DOI: https://doi.org/10.1104/pp.103.033936
Zhang, Y., in Ascorbic Acid in Plants, Zhang, Y., Ed., Springer, New York, 2013, 35-43. DOI: 10.1007/978-1-4614-4127-4_3 DOI: https://doi.org/10.1007/978-1-4614-4127-4_3
Yoshimura, K.; Ishikawa, T., in Ascorbic Acid in Plant Growth, Development and Stress Tolerance, Hossain, M. A., Ed., Springer Cham, 2017, 1-23. DOI: 10.1007/978-3-319-74057-7_1 DOI: https://doi.org/10.1007/978-3-319-74057-7_1
Gómez-García, M. d. R.; Ochoa-Alejo, N. Rev. Bras. Bot. 2015, 39, 157-168. DOI: 10.1007/s40415-015-0232-0 DOI: https://doi.org/10.1007/s40415-015-0232-0
Rodriguez-Ruiz, M.; Mateos, R. M.; Codesido, V.; Corpas, F. J.; Palma, J. M. Redox Biol. 2017, 12, 171-181. DOI: 10.1016/j.redox.2017.02.009 DOI: https://doi.org/10.1016/j.redox.2017.02.009
Wang, J.; Zhang, Z.; Huang, R. Plant Signal Behav. 2013, 8, e24536. DOI: 10.4161/psb.24536 DOI: https://doi.org/10.4161/psb.24536
Zhang, W.; Lorence, A.; Gruszewski, H.A.; Chevone, B.I.; Nessler, C.L. Plant Physiol. 2009, 150, 942-950. DOI: 10.1104/pp.109.138453 DOI: https://doi.org/10.1104/pp.109.138453
Zhang, Z.; Wang, J.; Zhang, R.; Huang, R. Plant J. 2012, 71, 273-287. DOI: 10.1111/j.1365-313X.2012.04996.x DOI: https://doi.org/10.1111/j.1365-313X.2012.04996.x
Arce-Rodríguez, M.L.; Martínez, O.; Ochoa-Alejo, N. Int. J. Mol. Sci. 2021, 22, 2229. DOI: 10.3390/ijms22052229 DOI: https://doi.org/10.3390/ijms22052229
Alos, E.; Rodrigo, M.J.; Zacarias, L. Plant Sci. 2013, 207, 2-11. DOI: 10.1016/j.plantsci.2013.02.007 DOI: https://doi.org/10.1016/j.plantsci.2013.02.007
Chiaiese, P.; Corrado, G.; Minutolo, M.; Barone, A.; Errico, A. Plants 2019, 8, 206. DOI: 10.3390/plants8070206 DOI: https://doi.org/10.3390/plants8070206
Denev, P.; Todorova, V.; Ognyanov, M.; Georgiev, Y.; Yanakieva, I.; Tringovska, I.; Grozeva, S.; Kostova, D. J. Food Meas. Charact. 2019, 13, 2510-2520. DOI: 10.1007/s11694-019-00171-y DOI: https://doi.org/10.1007/s11694-019-00171-y
Antonious, G.F.; Lobel, L.; Kochhar, T.; Berke, T.; Jarret, R.L. J. Environ. Sci. Health B. 2009, 44, 621-626. DOI: 10.1080/03601230903000727 DOI: https://doi.org/10.1080/03601230903000727
Velasquez-Valle, R.; Villa-Ruano, N.; Hidalgo-Martinez, D.; Zepeda-Vallejo, L.G.; Perez-Hernandez, N.; Reyes-Lopez, C.A.; Reyes-Cervantes, E.; Medina-Melchor, D.L.; Becerra-Martinez, E. Food Res. Int. 2020, 131, 108863. DOI: 10.1016/j.foodres.2019.108863 DOI: https://doi.org/10.1016/j.foodres.2019.108863
Topuz, A.; Ozdemir, F. J. Food Compost. Anal. 2007, 20, 596-602. DOI: 10.1016/j.jfca.2007.03.007 DOI: https://doi.org/10.1016/j.jfca.2007.03.007
Wahyuni, Y.; Ballester, A. R.; Sudarmonowati, E.; Bino, R. J.; Bovy, A. G. Phytochemistry 2011, 72, 1358-1370. DOI: 10.1016/j.phytochem.2011.03.016 DOI: https://doi.org/10.1016/j.phytochem.2011.03.016
Barua, A.G.; Hazarika, S.; Pathak, J. S.; Kalita, C. Int. J. Food Sci. Nutr. 2008, 59, 671-678. DOI: 10.1080/09638280701623810 DOI: https://doi.org/10.1080/09638280701623810
Zamljen, T.; Jakopic, J.; Hudina, M.; Veberic, R.; Slatnar, A. Sci. Rep. 2021, 11, 4932. DOI: 10.1038/s41598-021-84458-5 DOI: https://doi.org/10.1038/s41598-021-84458-5
Zamljen, T.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Slatnar, A. Plants 2021, 11, 101. DOI: 10.3390/plants11010101 DOI: https://doi.org/10.3390/plants11010101
Garcia-Gonzalez, C. A.; Silvar, C. Plants 2020, 9, 986. DOI: 10.3390/plants9080986 DOI: https://doi.org/10.3390/plants9080986
Simonne, A. H.; Simonne, E.H.; Eitenmiller, R. R.; Mills, H. A.; Green, N. R. J. Food Compost. Anal. 1997, 10, 299-311. DOI: 10.1006/jfca.1997.0544 DOI: https://doi.org/10.1006/jfca.1997.0544
Fratianni, F.; d’Acierno, A.; Cozzolino, A.; Spigno, P.; Riccardi, R.; Raimo, F.; Pane, C.; Zaccardelli, M.; Tranchida Lombardo, V.; Tucci, M.; Grillo, S.; Coppola, R.; Nazzaro, F. Antioxidants 2020, 9, 556. DOI: 10.3390/antiox9060556 DOI: https://doi.org/10.3390/antiox9060556
Perla, V.; Nimmakayala, P.; Nadimi, M.; Alaparthi, S.; Hankins, G. R.; Ebert, A. W.; Reddy, U. K. Food Chem. 2016, 202, 189-198. DOI: 10.1016/j.foodchem.2016.01.135 DOI: https://doi.org/10.1016/j.foodchem.2016.01.135
Manikharda, T. M.; Arakaki, M.; Yonamine, K.; Hashimoto, F.; Takara, K.; Wada, K. J. Oleo Sci. 2018, 67, 113-123. DOI: 10.5650/jos.ess17156 DOI: https://doi.org/10.5650/jos.ess17156
Sarpras, M.; Ahmad, I.; Rawoof, A.; Ramchiary, N. LWT. 2019, 105, 363-370. DOI: 10.1016/j.lwt.2019.02.020 DOI: https://doi.org/10.1016/j.lwt.2019.02.020
Bhandari, S.R.; Jung, B.-D.; Baek, H.-Y.; Lee, Y.-S. HortScience, 2013, 48, 1275-1282. DOI: 10.21273/hortsci.48.10.1275 DOI: https://doi.org/10.21273/HORTSCI.48.10.1275
Ye, Z.; Shang, Z.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Food Chem. 2022, 368, 130797. DOI: 10.1016/j.foodchem.2021.130797 DOI: https://doi.org/10.1016/j.foodchem.2021.130797
Howard, L. R.; Smith, R. T.; Wagner, A. B.; Villalon, B.; Burns, E. E. J. Food Sci. Technol. 1994, 59, 362-365. DOI: 10.1111/j.1365-2621.1994.tb06967.x DOI: https://doi.org/10.1111/j.1365-2621.1994.tb06967.x
Khadi, B. M.; Goud, J. V.; Patil, V. B. Plant Foods Hum. Nutr. 1987, 37, 9-15. DOI: 10.1007/BF01092295 DOI: https://doi.org/10.1007/BF01092295
Marin, A.; Ferreres, F.; Tomas-Barberan, F. A.; Gil, M.I. J. Agric. Food Chem. 2004, 52, 3861-3869. DOI: 10.1021/jf0497915 DOI: https://doi.org/10.1021/jf0497915
Iqbal, Q.; Amjad, M.; Asi, M. R.; Arino, A. Plant Foods Hum. Nutr. 2013, 68, 358-363. DOI: 10.1007/s11130-013-0386-5 DOI: https://doi.org/10.1007/s11130-013-0386-5
Aniel Kumar, O.; Subba Tata, S. Not. Sci. Biol. 2009, 1, 50-52. DOI: 10.15835/nsb113445 DOI: https://doi.org/10.15835/nsb113445
Aloni, B.; Karni, L.; Deventurero, G.; Turhan, E.; Aktas, H. J. Hort. Sci. Biotechnol. 2015, 83, 100-105. DOI: 10.1080/14620316.2008.11512353 DOI: https://doi.org/10.1080/14620316.2008.11512353
Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. J. Funct. Foods 2011, 3, 44-49. DOI: 10.1016/j.jff.2011.02.002 DOI: https://doi.org/10.1016/j.jff.2011.02.002
Markus, F.; Daood, H.G.; Kapitany, J.; Biacs, P.A. J. Agric. Food Chem. 1999, 47, 100-7. DOI: 10.1021/jf980485z DOI: https://doi.org/10.1021/jf980485z
Dobon-Suarez, A.; Gimenez, M. J.; Castillo, S.; Garcia-Pastor, M. E.; Zapata, P. J. Molecules. 2021, 26, 3099. DOI: 10.3390/molecules26113099 DOI: https://doi.org/10.3390/molecules26113099
Chassy, A. W.; Bui, L.; Renaud, E. N. C.; Van Horn, M.; Mitchell, A. E. J. Agric. Food Chem. 2006, 54, 8244-8252. DOI: 10.1021/jf060950p DOI: https://doi.org/10.1021/jf060950p
Antonious, G. F. J. Environ. Sci. Health B. 2014, 49, 769-774. DOI: 10.1080/03601234.2014.929908 DOI: https://doi.org/10.1080/03601234.2014.929908
Hallmann, E.; Rembialkowska, E. J. Sci. Food Agric. 2012, 92, 2409-2415. DOI: 10.1002/jsfa.5624 DOI: https://doi.org/10.1002/jsfa.5624
Lo Scalzo, R.; Campanelli, G.; Paolo, D.; Fibiani, M.; Bianchi, G. Eur. Food Res. Technol. 2020, 246, 1325-1339. DOI: 10.1007/s00217-020-03492-1 DOI: https://doi.org/10.1007/s00217-020-03492-1
Ribes-Moya, A. M.; Raigon, M. D.; Moreno-Peris, E.; Fita, A.; Rodriguez-Burruezo, A. PLoS One. 2018, 13, e0207888. DOI: 10.1371/journal.pone.0207888 DOI: https://doi.org/10.1371/journal.pone.0207888
Tripodi, P.; Francese, G.; Sanajà, V. O.; Di Cesare, C.; Festa, G.; D’Alessandro, A.; Mennella, G. J. Food Compost. Anal. 2021, 103, 104116. DOI: 10.1016/j.jfca.2021.104116 DOI: https://doi.org/10.1016/j.jfca.2021.104116
Padilla, Y. G.; Gisbert-Mullor, R.; Lopez-Serrano, L.; Lopez-Galarza, S.; Calatayud, A. Antioxidants. 2021, 10, 576. DOI: 10.3390/antiox10040576 DOI: https://doi.org/10.3390/antiox10040576
Gisbert-Mullor, R.; Ceccanti, C.; Gara Padilla, Y.; Lopez-Galarza, S.; Calatayud, A.; Conte, G.; Guidi, L. Antioxidants 2020, 9, 501. DOI: 10.3390/antiox9060501 DOI: https://doi.org/10.3390/antiox9060501
Chavez-Mendoza, C.; Sanchez, E.; Carvajal-Millan, E.; Munoz-Marquez, E.; Guevara-Aguilar, A. Molecules. 2013, 18, 15689-15703. DOI: 10.3390/molecules181215689 DOI: https://doi.org/10.3390/molecules181215689
Lekala, C. S.; Madani, K. S. H.; Phan, A. D. T.; Maboko, M. M.; Fotouo, H.; Soundy, P.; Sultanbawa, Y.; Sivakumar, D. Food Chem. 2019, 275, 85-94. DOI: 10.1016/j.foodchem.2018.09.097 DOI: https://doi.org/10.1016/j.foodchem.2018.09.097
Selahle, K.M.; Sivakumar, D.; Jifon, J.; Soundy, P. Food Chem. 2015, 173, 951-956. DOI: 10.1016/j.foodchem.2014.10.034 DOI: https://doi.org/10.1016/j.foodchem.2014.10.034
Valero, D.; Zapata, P.J.; Martinez-Romero, D.; Guillen, F.; Castillo, S.; Serrano, M. Food Sci. Technol. Int. 2014, 20, 265-274. DOI: 10.1177/1082013213483137 DOI: https://doi.org/10.1177/1082013213483137
Liang, Y.R.; Liao, F.C.; Huang, T.P. PLoS One 2022, 17, e0264276. DOI: 10.1371/journal.pone.0264276 DOI: https://doi.org/10.1371/journal.pone.0264276
Kasampalis, D.S.; Tsouvaltzis, P.; Ntouros, K.; Gertsis, A.; Gitas, I.; Moshou, D.; Siomos, A.S. J. Sci. Food Agric. 2022, 102, 445-454. DOI: 10.1002/jsfa.11375 DOI: https://doi.org/10.1002/jsfa.11375
Martinez, S.; Lopez, M.; Gonzalez-Raurich, M.; Bernardo Alvarez, A. Int. J. Food Sci. Nutr. 2005, 56, 45-51. DOI: 10.1080/09637480500081936 DOI: https://doi.org/10.1080/09637480500081936
Rahman, M. S.; Al-Rizeiqi, M. H.; Guizani, N.; Al-Ruzaiqi, M. S.; Al-Aamri, A. H.; Zainab, S. J. Food Sci. Technol. 2015, 52, 1691-1697. DOI: 10.1007/s13197-013-1173-x DOI: https://doi.org/10.1007/s13197-013-1173-x
Serrano-Martinez, A.; Fortea, M. I.; Lucas-Abellan, C.; Lopez-Miranda, S.; Mercader, M. T.; Nunez-Delicado, E.; Gabaldon, J.A. Food Sci. Technol. Int. 2016, 22, 565-573. DOI: 10.1177/1082013216631143 DOI: https://doi.org/10.1177/1082013216631143
Panigrahi, J.; Patel, M.; Patel, N.; Gheewala, B.; Gantait, S. 3 Biotech. 2018, 8, 280. DOI: 10.1007/s13205-018-1284-1 DOI: https://doi.org/10.1007/s13205-018-1284-1
Mashabela, M. N.; Selahle, K. M.; Soundy, P.; Crosby, K. M.; Sivakumar, D. J. Food Sci. 2015, 80, H2612-H2618. DOI: 10.1111/1750-3841.13103 DOI: https://doi.org/10.1111/1750-3841.13103
Ramamurthy, M. S.; Kamat, A.; Kakatkar, A.; Ghadge, N.; Bhushan, B.; Alur, M. Int. J. Food Sci. Nutr. 2004, 55, 291-299. DOI: 10.1080/09637480412331290503 DOI: https://doi.org/10.1080/09637480412331290503
Iqbal, Q.; Amjad, M.; Asi, M. R.; Nawaz, A.; Khan, S. M.; Arino, A.; Ahmad, T. Foods. 2016, 5, 63 DOI: 10.3390/foods5030063 DOI: https://doi.org/10.3390/foods5030063
de Jesus Ornelas-Paz, J.; Castaneda-Jimenez, A. C.; Estrada-Alvarado, M. I.; Ramos-Aguilar, O. P.; Ibarra-Junquera, V.; Perez-Martinez, J. D.; Escalante-Minakata, P.; Guevara-Arauza, J. C.; Ruiz-Cruz, S. J. Food Sci. Technol. 2015, 52, 6415-6424. DOI: 10.1007/s13197-015-1749-8 DOI: https://doi.org/10.1007/s13197-015-1749-8
Meckelmann, S. W.; Riegel, D. W.; van Zonneveld, M. J.; Rios, L.; Pena, K.; Ugas, R.; Quinonez, L.; Mueller-Seitz, E.; Petz, M. J. Agric. Food Chem. 2013, 61, 2530-2537. DOI: 10.1021/jf304986q DOI: https://doi.org/10.1021/jf304986q
Kamal, M.M.; Ali, M.R.; Rahman, M. M.; Shishir, M. R. I.; Yasmin, S.; Sarker, M. S. H. J. Food Sci. Technol. 2019, 56, 3185-3194. DOI: 10.1007/s13197-019-03733-6 DOI: https://doi.org/10.1007/s13197-019-03733-6
Olatunji, T. L.; Afolayan, A.J. Int. J. Veg. Sci. 2019, 26, 190-207. DOI: 10.1080/19315260.2019.1629519 DOI: https://doi.org/10.1080/19315260.2019.1629519
Maurya, V. K.; Gothandam, K. M.; Ranjan, V.; Shakya, A.; Pareek, S. J. Sci. Food Agric. 2018, 98, 3492-3500. DOI: 10.1002/jsfa.8868 DOI: https://doi.org/10.1002/jsfa.8868
Speranza, G.; Lo Scalzo, R.; Morelli, C. F.; Rabuffetti, M.; Bianchi, G. J. Food Biochem. 2019, 43, e13031. DOI: 10.1111/jfbc.13031 DOI: https://doi.org/10.1111/jfbc.13031
Sharma, R.; Joshi, V. K.; Kaushal, M. J. Food Sci. Technol. 2015, 52, 3433-3439. DOI: 10.1007/s13197-014-1374-y DOI: https://doi.org/10.1007/s13197-014-1374-y
Wang, J.; Yang, X. H.; Mujumdar, A. S.; Fang, X. M.; Zhang, Q.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Food Chem. 2018, 259, 65-72. DOI: 10.1016/j.foodchem.2018.03.123 DOI: https://doi.org/10.1016/j.foodchem.2018.03.123
Alvarez-Parrilla, E.; de la Rosa, L.A.; Amarowicz, R.; Shahidi, F. J. Agric. Food Chem. 2011, 59, 163-173. DOI: 10.1021/jf103434u DOI: https://doi.org/10.1021/jf103434u
Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. Molecules. 2020, 25, 4287. DOI: 10.3390/molecules25184287 DOI: https://doi.org/10.3390/molecules25184287
Gupta, S.; Bains, K. Food Nutr. Bull. 2006, 27, 306-310. DOI: 10.1177/156482650602700404 DOI: https://doi.org/10.1177/156482650602700404
Yalim, S.; Ozdemir, Y. Int. J. Food Sci. Nutr. 2003, 54, 291-296. DOI: 10.1080/09637480120092116 DOI: https://doi.org/10.1080/09637480120092116
Park, J.; Kim, S.; Moon, B. J. Food Sci. 2011, 76, C1075-C1080. DOI: 10.1111/j.1750-3841.2011.02297.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02297.x
Hwang, I. G.; Shin, Y. J.; Lee, S.; Lee, J.; Yoo, S.M. Prev. Nutr. Food Sci. 2012, 17, 286-292. DOI: 10.3746/pnf.2012.17.4.286 DOI: https://doi.org/10.3746/pnf.2012.17.4.286


Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Maria Guadalupe Villa-Rivera, Neftalí Ochoa-Alejo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
