Ascorbic Acid in Chili Pepper Fruits: Biosynthesis, Accumulation, and Factors Affecting its Content

Authors

DOI:

https://doi.org/10.29356/jmcs.v67i3.2003

Keywords:

Capsicum, chili pepper, ascorbic acid, vitamin C, antioxidant

Abstract

Abstract. Chili pepper fruits are important sources of bioactive compounds e.g., capsaicinoids, carotenoids, ascorbic acid, flavonoids, phenolic compounds, and minerals. From them, chili pepper fruits synthesize and accumulate important concentrations of ascorbic acid (AsA) (also known as vitamin C). AsA has an important role as a free-radical scavenger and as an effective antioxidant. In plants, AsA develops crucial functions for the homeostasis maintenance of the cells, whereas, in animals, AsA is very important for cellular metabolism too. Because of humans and some animal species are incapable of synthesizing AsA, they must acquire it from vegetable food, and chili pepper fruits represent an excellent option for vitamin C uptake. In this review, we integrate the latest biological advances of the research about vitamin C in chili pepper fruits including biosynthesis, accumulation, and the effects of agricultural practices and postharvest storage.

 

Resumen. El chile es una fuente muy importante de compuestos bioactivos (capsaicinoides, carotenoidess, ácido ascórbico, flavonoides, compuestos fenólicos y minerales). De éstos, el chile contiene concentraciones muy importantes de ácido ascóbico (AsA) (también conocido como vitamina C). El AsA tiene un importante papel en la eliminación de radicales libres y es un antioxidante muy efectivo. En plantas, el AsA lleva a cabo funciones cruciales para el mantenimiento de la homeostasis celular, mientras que, en animales, el AsA es muy importante para el metabolismo celular. Debido a que los humanos y algunas especies animales son incapaces de sintetizarlo, ellos deben adquirirlo a partir de alimentos de origen vegetal, siendo los frutos de chile una excelente fuente de vitamina C. En esta revisión, se integran los avances más recientes acerca de la investigación de la vitamina C, su ruta de biosíntesis, su contenido en frutos de chile y, finalmente, el efecto de diferentes factores como el manejo agrícola y el procesamiento de frutos de Capsicum sobre el contenido de AsA.

Downloads

Download data is not yet available.

Author Biographies

Maria Guadalupe Villa-Rivera, Cinvestav-Unidad Irapuato

Departamento de Ingeniería Genética

Neftalí Ochoa-Alejo, Cinvestav-Unidad Irapuato

Departamento de Ingeniería Genética

References

Badia, A. D.; Spina, A.A.; Vassalotti, G. J. Nut. Ecol. Food Res. 2017, 4, 167-177. DOI: 10.1166/jnef.2017.1163 DOI: https://doi.org/10.1166/jnef.2017.1163

Jarret, R. L.; Barboza, G. E.; Costa Batista, F. R.d.; Berke, T.; Chou, Y.-Y.; Hulse-Kemp, A.; Ochoa-Alejo, N.; Tripodi, P.; Veres, A.; Garcia, C. C.; Csillery, G.; Huang, Y.-K.; Kiss, E.; Kovacs, Z.; Kondrak, M.; Arce-Rodriguez, M.L.; Scaldaferro, M. A.; Szoke, A. J. Am. Soc. Hortic. Sci. 2019, 144, 3-22. DOI: 10.21273/jashs04446-18 DOI: https://doi.org/10.21273/JASHS04446-18

Chamikara, M. D. M.; Dissanayake, D. R. R. P.; Ishan, M.; Sooriyapathirana, S. D. S. S. Ceylon J. Sci. 2016, 45, 5-20 DOI: 10.4038/cjs.v45i3.7396 DOI: https://doi.org/10.4038/cjs.v45i3.7396

Sandoval-Castro, C.J.; Valdez-Morales, M.; Oomah, B.D.; Gutierrez-Dorado, R.; Medina-Godoy, S.; Espinosa-Alonso, L.G. J. Food Sci. Technol. 2017, 54, 1999-2010. DOI: 10.1007/s13197-017-2636-2 DOI: https://doi.org/10.1007/s13197-017-2636-2

Farhoudi, R.; Mehrnia, M.A.; Lee, D.J. Nat. Prod. Res. 2019, 33, 871-874. DOI: 10.1080/14786419.2017.1410801 DOI: https://doi.org/10.1080/14786419.2017.1410801

Baenas, N.; Belovic, M.; Ilic, N.; Moreno, D. A.; Garcia-Viguera, C. Food Chem. 2019, 274, 872-885. DOI: 10.1016/j.foodchem.2018.09.047 DOI: https://doi.org/10.1016/j.foodchem.2018.09.047

de Sá Mendes, N.; Branco de Andrade Gonçalves, É.C. Trends Food Sci. Technol. 2020, 99, 229-243. DOI: 10.1016/j.tifs.2020.02.032 DOI: https://doi.org/10.1016/j.tifs.2020.02.032

Martinez-Ispizua, E.; Martinez-Cuenca, M.R.; Marsal, J. I.; Diez, M. J.; Soler, S.; Valcarcel, J. V.; Calatayud, A. Molecules. 2021, 26, 1031 DOI: 10.3390/molecules26041031 DOI: https://doi.org/10.3390/molecules26041031

Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Free Radic. Biol. Med. 2020, 159, 37-43. DOI: 10.1016/j.freeradbiomed.2020.07.013 DOI: https://doi.org/10.1016/j.freeradbiomed.2020.07.013

Zhang, Y., in Ascorbic Acid in Plants, Springer, 2013, 1-6. DOI: 10.1007/978-1-4614-4127-4_1 DOI: https://doi.org/10.1007/978-1-4614-4127-4_1

Szent-Györgyi, A. Biochem J. 1928, 22, 1387-409. DOI: 10.1042/bj0221387 DOI: https://doi.org/10.1042/bj0221387

Machlin, L.J. Ann. N. Y. Acad. Sci. 1992, 669, 1-6. DOI: 10.1111/j.1749-6632.1992.tb17084.x DOI: https://doi.org/10.1111/j.1749-6632.1992.tb17084.x

Banga, I.; Szent-Györgyi, A. Biochem. J. 1934, 28, 1625-1628. DOI: 10.1042/bj0281625 DOI: https://doi.org/10.1042/bj0281625

Njus, D.; Kelley, P.M. FEBS Lett. 1991, 284, 147-151. DOI: 10.1016/0014-5793(91)80672-P DOI: https://doi.org/10.1016/0014-5793(91)80672-P

Drouin, G.; Godin, J.-R.; Page, B. Curr. Genomics. 2011, 12, 371-378. DOI: 10.2174/138920211796429736 DOI: https://doi.org/10.2174/138920211796429736

Perez-Balladares, D.; Castaneda-Teran, M.; Granda-Albuja, M. G.; Tejera, E.; Iturralde, G.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Plant Foods Hum. Nutr. 2019, 74, 350-357. DOI: 10.1007/s11130-019-00744-8 DOI: https://doi.org/10.1007/s11130-019-00744-8

Kantar, M. B.; Anderson, J. E.; Lucht, S.A.; Mercer, K.; Bernau, V.; Case, K. A.; Le, N. C.; Frederiksen, M. K.; DeKeyser, H. C.; Wong, Z. Z.; Hastings, J. C.; Baumler, D. J. PLoS One 2016, 11, e0161464. DOI: 10.1371/journal.pone.0161464 DOI: https://doi.org/10.1371/journal.pone.0161464

Valente, A.; Albuquerque, T. G.; Sanches-Silva, A.; Costa, H. S. Food Res. Int. 2011, 44, 2237-2242. DOI: 10.1016/j.foodres.2011.02.012 DOI: https://doi.org/10.1016/j.foodres.2011.02.012

Najwa, R.; Azlan, A. Int. Food Res. J. 2017, 24, 726-733.

Zhang, Y., in Ascorbic Acid in Plants, Springer, New York, 2013, 7-33. DOI: 10.1007/978-1-4614-4127-4_2 DOI: https://doi.org/10.1007/978-1-4614-4127-4_2

Magiorkinis, E.; Beloukas, A.; Diamantis, A. Eur. J. Intern. Med. 2011, 22, 147-152. DOI: 10.1016/j.ejim.2010.10.006 DOI: https://doi.org/10.1016/j.ejim.2010.10.006

Sanchez-Moreno, C.; Cano, M. P.; de Ancos, B.; Plaza, L.; Olmedilla, B.; Granado, F.; Martin, A. J. Nutr. Biochem. 2006, 17, 183-189. DOI: 10.1016/j.jnutbio.2005.07.001 DOI: https://doi.org/10.1016/j.jnutbio.2005.07.001

Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Eur. J. Microbiol. Immunol. 2019, 9, 73-79. DOI: 10.1556/1886.2019.00016 DOI: https://doi.org/10.1556/1886.2019.00016

Asai, A.; Nakagawa, K.; Miyazawa, T. Biosci. Biotechnol. Biochem. 1999, 63, 2118-2122. DOI: 10.1271/bbb.63.2118 DOI: https://doi.org/10.1271/bbb.63.2118

Chaitanya, N. C.; Muthukrishnan, A.; Krishnaprasad, C. M. S.; Sanjuprasanna, G.; Pillay, P.; Mounika, B. J. Pharm. Bioall. Sci. 2018, 10, 119-125. DOI: 10.4103/jpbs.JPBS_12_18 DOI: https://doi.org/10.4103/JPBS.JPBS_12_18

Shenoy, N.; Creagan, E.; Witzig, T.; Levine, M. Cancer Cell. 2018, 34, 700-706. DOI: 10.1016/j.ccell.2018.07.014 DOI: https://doi.org/10.1016/j.ccell.2018.07.014

Vissers, M. C. M.; Das, A.B. Front Physiol. 2018, 9, 809. DOI: 10.3389/fphys.2018.00809 DOI: https://doi.org/10.3389/fphys.2018.00809

van Gorkom, G. N. Y.; Lookermans, E. L.; Van Elssen, C.; Bos, G.M.J. Nutrients 2019, 11, 977. DOI: 10.3390/nu11050977 DOI: https://doi.org/10.3390/nu11050977

Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J. D.; Marik, P.E. Front. Immunol. 2020, 11, 1451. DOI: 10.3389/fimmu.2020.01451 DOI: https://doi.org/10.3389/fimmu.2020.01451

Moretti, M.; Fraga, D.B.; Rodrigues, A.L.S. CNS Drugs. 2017, 31, 571-583. DOI: 10.1007/s40263-017-0446-8 DOI: https://doi.org/10.1007/s40263-017-0446-8

Ravetti; C.; Brignone; H.; Allemandi. P. Cosmetics. 2019, 6, 58. DOI: 10.3390/cosmetics6040058 DOI: https://doi.org/10.3390/cosmetics6040058

Raghu, S. V.; Rao, S.; Kini, V.; Kudva, A. K.; George, T.; Baliga, M. S. Food Funct. 2023, 14, 1290-1319. DOI: 10.1039/d2fo01911f DOI: https://doi.org/10.1039/D2FO01911F

Smirnoff, N. Free Radic. Biol. Med. 2018, 122, 116-129. DOI: 10.1016/j.freeradbiomed.2018.03.033 DOI: https://doi.org/10.1016/j.freeradbiomed.2018.03.033

Wheeler, G.; Ishikawa, T.; Pornsaksit, V.; Smirnoff, N. Elife 2015, 4, e06369. DOI: 10.7554/eLife.06369 DOI: https://doi.org/10.7554/eLife.06369

Wheeler, G. L.; Jones, M. A.; Smirnoff, N. Nature. 1998, 393, 365-369. DOI: 10.1038/30728 DOI: https://doi.org/10.1038/30728

Agius, F.; González-Lamothe, R.; Caballero, J. L.; Muñoz-Blanco, J.; Botella, M. A.; Valpuesta, V. Nat. Biotechnol. 2003, 21, 177-181. DOI: 10.1038/nbt777 DOI: https://doi.org/10.1038/nbt777

Lorence, A.; Chevone, B. I.; Mendes, P.; Nessler, C. L. Plant Physiol. 2004, 134, 1200-1205. DOI: 10.1104/pp.103.033936 DOI: https://doi.org/10.1104/pp.103.033936

Zhang, Y., in Ascorbic Acid in Plants, Zhang, Y., Ed., Springer, New York, 2013, 35-43. DOI: 10.1007/978-1-4614-4127-4_3 DOI: https://doi.org/10.1007/978-1-4614-4127-4_3

Yoshimura, K.; Ishikawa, T., in Ascorbic Acid in Plant Growth, Development and Stress Tolerance, Hossain, M. A., Ed., Springer Cham, 2017, 1-23. DOI: 10.1007/978-3-319-74057-7_1 DOI: https://doi.org/10.1007/978-3-319-74057-7_1

Gómez-García, M. d. R.; Ochoa-Alejo, N. Rev. Bras. Bot. 2015, 39, 157-168. DOI: 10.1007/s40415-015-0232-0 DOI: https://doi.org/10.1007/s40415-015-0232-0

Rodriguez-Ruiz, M.; Mateos, R. M.; Codesido, V.; Corpas, F. J.; Palma, J. M. Redox Biol. 2017, 12, 171-181. DOI: 10.1016/j.redox.2017.02.009 DOI: https://doi.org/10.1016/j.redox.2017.02.009

Wang, J.; Zhang, Z.; Huang, R. Plant Signal Behav. 2013, 8, e24536. DOI: 10.4161/psb.24536 DOI: https://doi.org/10.4161/psb.24536

Zhang, W.; Lorence, A.; Gruszewski, H.A.; Chevone, B.I.; Nessler, C.L. Plant Physiol. 2009, 150, 942-950. DOI: 10.1104/pp.109.138453 DOI: https://doi.org/10.1104/pp.109.138453

Zhang, Z.; Wang, J.; Zhang, R.; Huang, R. Plant J. 2012, 71, 273-287. DOI: 10.1111/j.1365-313X.2012.04996.x DOI: https://doi.org/10.1111/j.1365-313X.2012.04996.x

Arce-Rodríguez, M.L.; Martínez, O.; Ochoa-Alejo, N. Int. J. Mol. Sci. 2021, 22, 2229. DOI: 10.3390/ijms22052229 DOI: https://doi.org/10.3390/ijms22052229

Alos, E.; Rodrigo, M.J.; Zacarias, L. Plant Sci. 2013, 207, 2-11. DOI: 10.1016/j.plantsci.2013.02.007 DOI: https://doi.org/10.1016/j.plantsci.2013.02.007

Chiaiese, P.; Corrado, G.; Minutolo, M.; Barone, A.; Errico, A. Plants 2019, 8, 206. DOI: 10.3390/plants8070206 DOI: https://doi.org/10.3390/plants8070206

Denev, P.; Todorova, V.; Ognyanov, M.; Georgiev, Y.; Yanakieva, I.; Tringovska, I.; Grozeva, S.; Kostova, D. J. Food Meas. Charact. 2019, 13, 2510-2520. DOI: 10.1007/s11694-019-00171-y DOI: https://doi.org/10.1007/s11694-019-00171-y

Antonious, G.F.; Lobel, L.; Kochhar, T.; Berke, T.; Jarret, R.L. J. Environ. Sci. Health B. 2009, 44, 621-626. DOI: 10.1080/03601230903000727 DOI: https://doi.org/10.1080/03601230903000727

Velasquez-Valle, R.; Villa-Ruano, N.; Hidalgo-Martinez, D.; Zepeda-Vallejo, L.G.; Perez-Hernandez, N.; Reyes-Lopez, C.A.; Reyes-Cervantes, E.; Medina-Melchor, D.L.; Becerra-Martinez, E. Food Res. Int. 2020, 131, 108863. DOI: 10.1016/j.foodres.2019.108863 DOI: https://doi.org/10.1016/j.foodres.2019.108863

Topuz, A.; Ozdemir, F. J. Food Compost. Anal. 2007, 20, 596-602. DOI: 10.1016/j.jfca.2007.03.007 DOI: https://doi.org/10.1016/j.jfca.2007.03.007

Wahyuni, Y.; Ballester, A. R.; Sudarmonowati, E.; Bino, R. J.; Bovy, A. G. Phytochemistry 2011, 72, 1358-1370. DOI: 10.1016/j.phytochem.2011.03.016 DOI: https://doi.org/10.1016/j.phytochem.2011.03.016

Barua, A.G.; Hazarika, S.; Pathak, J. S.; Kalita, C. Int. J. Food Sci. Nutr. 2008, 59, 671-678. DOI: 10.1080/09638280701623810 DOI: https://doi.org/10.1080/09638280701623810

Zamljen, T.; Jakopic, J.; Hudina, M.; Veberic, R.; Slatnar, A. Sci. Rep. 2021, 11, 4932. DOI: 10.1038/s41598-021-84458-5 DOI: https://doi.org/10.1038/s41598-021-84458-5

Zamljen, T.; Medic, A.; Veberic, R.; Hudina, M.; Jakopic, J.; Slatnar, A. Plants 2021, 11, 101. DOI: 10.3390/plants11010101 DOI: https://doi.org/10.3390/plants11010101

Garcia-Gonzalez, C. A.; Silvar, C. Plants 2020, 9, 986. DOI: 10.3390/plants9080986 DOI: https://doi.org/10.3390/plants9080986

Simonne, A. H.; Simonne, E.H.; Eitenmiller, R. R.; Mills, H. A.; Green, N. R. J. Food Compost. Anal. 1997, 10, 299-311. DOI: 10.1006/jfca.1997.0544 DOI: https://doi.org/10.1006/jfca.1997.0544

Fratianni, F.; d’Acierno, A.; Cozzolino, A.; Spigno, P.; Riccardi, R.; Raimo, F.; Pane, C.; Zaccardelli, M.; Tranchida Lombardo, V.; Tucci, M.; Grillo, S.; Coppola, R.; Nazzaro, F. Antioxidants 2020, 9, 556. DOI: 10.3390/antiox9060556 DOI: https://doi.org/10.3390/antiox9060556

Perla, V.; Nimmakayala, P.; Nadimi, M.; Alaparthi, S.; Hankins, G. R.; Ebert, A. W.; Reddy, U. K. Food Chem. 2016, 202, 189-198. DOI: 10.1016/j.foodchem.2016.01.135 DOI: https://doi.org/10.1016/j.foodchem.2016.01.135

Manikharda, T. M.; Arakaki, M.; Yonamine, K.; Hashimoto, F.; Takara, K.; Wada, K. J. Oleo Sci. 2018, 67, 113-123. DOI: 10.5650/jos.ess17156 DOI: https://doi.org/10.5650/jos.ess17156

Sarpras, M.; Ahmad, I.; Rawoof, A.; Ramchiary, N. LWT. 2019, 105, 363-370. DOI: 10.1016/j.lwt.2019.02.020 DOI: https://doi.org/10.1016/j.lwt.2019.02.020

Bhandari, S.R.; Jung, B.-D.; Baek, H.-Y.; Lee, Y.-S. HortScience, 2013, 48, 1275-1282. DOI: 10.21273/hortsci.48.10.1275 DOI: https://doi.org/10.21273/HORTSCI.48.10.1275

Ye, Z.; Shang, Z.; Li, M.; Zhang, X.; Ren, H.; Hu, X.; Yi, J. Food Chem. 2022, 368, 130797. DOI: 10.1016/j.foodchem.2021.130797 DOI: https://doi.org/10.1016/j.foodchem.2021.130797

Howard, L. R.; Smith, R. T.; Wagner, A. B.; Villalon, B.; Burns, E. E. J. Food Sci. Technol. 1994, 59, 362-365. DOI: 10.1111/j.1365-2621.1994.tb06967.x DOI: https://doi.org/10.1111/j.1365-2621.1994.tb06967.x

Khadi, B. M.; Goud, J. V.; Patil, V. B. Plant Foods Hum. Nutr. 1987, 37, 9-15. DOI: 10.1007/BF01092295 DOI: https://doi.org/10.1007/BF01092295

Marin, A.; Ferreres, F.; Tomas-Barberan, F. A.; Gil, M.I. J. Agric. Food Chem. 2004, 52, 3861-3869. DOI: 10.1021/jf0497915 DOI: https://doi.org/10.1021/jf0497915

Iqbal, Q.; Amjad, M.; Asi, M. R.; Arino, A. Plant Foods Hum. Nutr. 2013, 68, 358-363. DOI: 10.1007/s11130-013-0386-5 DOI: https://doi.org/10.1007/s11130-013-0386-5

Aniel Kumar, O.; Subba Tata, S. Not. Sci. Biol. 2009, 1, 50-52. DOI: 10.15835/nsb113445 DOI: https://doi.org/10.15835/nsb113445

Aloni, B.; Karni, L.; Deventurero, G.; Turhan, E.; Aktas, H. J. Hort. Sci. Biotechnol. 2015, 83, 100-105. DOI: 10.1080/14620316.2008.11512353 DOI: https://doi.org/10.1080/14620316.2008.11512353

Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. J. Funct. Foods 2011, 3, 44-49. DOI: 10.1016/j.jff.2011.02.002 DOI: https://doi.org/10.1016/j.jff.2011.02.002

Markus, F.; Daood, H.G.; Kapitany, J.; Biacs, P.A. J. Agric. Food Chem. 1999, 47, 100-7. DOI: 10.1021/jf980485z DOI: https://doi.org/10.1021/jf980485z

Dobon-Suarez, A.; Gimenez, M. J.; Castillo, S.; Garcia-Pastor, M. E.; Zapata, P. J. Molecules. 2021, 26, 3099. DOI: 10.3390/molecules26113099 DOI: https://doi.org/10.3390/molecules26113099

Chassy, A. W.; Bui, L.; Renaud, E. N. C.; Van Horn, M.; Mitchell, A. E. J. Agric. Food Chem. 2006, 54, 8244-8252. DOI: 10.1021/jf060950p DOI: https://doi.org/10.1021/jf060950p

Antonious, G. F. J. Environ. Sci. Health B. 2014, 49, 769-774. DOI: 10.1080/03601234.2014.929908 DOI: https://doi.org/10.1080/03601234.2014.929908

Hallmann, E.; Rembialkowska, E. J. Sci. Food Agric. 2012, 92, 2409-2415. DOI: 10.1002/jsfa.5624 DOI: https://doi.org/10.1002/jsfa.5624

Lo Scalzo, R.; Campanelli, G.; Paolo, D.; Fibiani, M.; Bianchi, G. Eur. Food Res. Technol. 2020, 246, 1325-1339. DOI: 10.1007/s00217-020-03492-1 DOI: https://doi.org/10.1007/s00217-020-03492-1

Ribes-Moya, A. M.; Raigon, M. D.; Moreno-Peris, E.; Fita, A.; Rodriguez-Burruezo, A. PLoS One. 2018, 13, e0207888. DOI: 10.1371/journal.pone.0207888 DOI: https://doi.org/10.1371/journal.pone.0207888

Tripodi, P.; Francese, G.; Sanajà, V. O.; Di Cesare, C.; Festa, G.; D’Alessandro, A.; Mennella, G. J. Food Compost. Anal. 2021, 103, 104116. DOI: 10.1016/j.jfca.2021.104116 DOI: https://doi.org/10.1016/j.jfca.2021.104116

Padilla, Y. G.; Gisbert-Mullor, R.; Lopez-Serrano, L.; Lopez-Galarza, S.; Calatayud, A. Antioxidants. 2021, 10, 576. DOI: 10.3390/antiox10040576 DOI: https://doi.org/10.3390/antiox10040576

Gisbert-Mullor, R.; Ceccanti, C.; Gara Padilla, Y.; Lopez-Galarza, S.; Calatayud, A.; Conte, G.; Guidi, L. Antioxidants 2020, 9, 501. DOI: 10.3390/antiox9060501 DOI: https://doi.org/10.3390/antiox9060501

Chavez-Mendoza, C.; Sanchez, E.; Carvajal-Millan, E.; Munoz-Marquez, E.; Guevara-Aguilar, A. Molecules. 2013, 18, 15689-15703. DOI: 10.3390/molecules181215689 DOI: https://doi.org/10.3390/molecules181215689

Lekala, C. S.; Madani, K. S. H.; Phan, A. D. T.; Maboko, M. M.; Fotouo, H.; Soundy, P.; Sultanbawa, Y.; Sivakumar, D. Food Chem. 2019, 275, 85-94. DOI: 10.1016/j.foodchem.2018.09.097 DOI: https://doi.org/10.1016/j.foodchem.2018.09.097

Selahle, K.M.; Sivakumar, D.; Jifon, J.; Soundy, P. Food Chem. 2015, 173, 951-956. DOI: 10.1016/j.foodchem.2014.10.034 DOI: https://doi.org/10.1016/j.foodchem.2014.10.034

Valero, D.; Zapata, P.J.; Martinez-Romero, D.; Guillen, F.; Castillo, S.; Serrano, M. Food Sci. Technol. Int. 2014, 20, 265-274. DOI: 10.1177/1082013213483137 DOI: https://doi.org/10.1177/1082013213483137

Liang, Y.R.; Liao, F.C.; Huang, T.P. PLoS One 2022, 17, e0264276. DOI: 10.1371/journal.pone.0264276 DOI: https://doi.org/10.1371/journal.pone.0264276

Kasampalis, D.S.; Tsouvaltzis, P.; Ntouros, K.; Gertsis, A.; Gitas, I.; Moshou, D.; Siomos, A.S. J. Sci. Food Agric. 2022, 102, 445-454. DOI: 10.1002/jsfa.11375 DOI: https://doi.org/10.1002/jsfa.11375

Martinez, S.; Lopez, M.; Gonzalez-Raurich, M.; Bernardo Alvarez, A. Int. J. Food Sci. Nutr. 2005, 56, 45-51. DOI: 10.1080/09637480500081936 DOI: https://doi.org/10.1080/09637480500081936

Rahman, M. S.; Al-Rizeiqi, M. H.; Guizani, N.; Al-Ruzaiqi, M. S.; Al-Aamri, A. H.; Zainab, S. J. Food Sci. Technol. 2015, 52, 1691-1697. DOI: 10.1007/s13197-013-1173-x DOI: https://doi.org/10.1007/s13197-013-1173-x

Serrano-Martinez, A.; Fortea, M. I.; Lucas-Abellan, C.; Lopez-Miranda, S.; Mercader, M. T.; Nunez-Delicado, E.; Gabaldon, J.A. Food Sci. Technol. Int. 2016, 22, 565-573. DOI: 10.1177/1082013216631143 DOI: https://doi.org/10.1177/1082013216631143

Panigrahi, J.; Patel, M.; Patel, N.; Gheewala, B.; Gantait, S. 3 Biotech. 2018, 8, 280. DOI: 10.1007/s13205-018-1284-1 DOI: https://doi.org/10.1007/s13205-018-1284-1

Mashabela, M. N.; Selahle, K. M.; Soundy, P.; Crosby, K. M.; Sivakumar, D. J. Food Sci. 2015, 80, H2612-H2618. DOI: 10.1111/1750-3841.13103 DOI: https://doi.org/10.1111/1750-3841.13103

Ramamurthy, M. S.; Kamat, A.; Kakatkar, A.; Ghadge, N.; Bhushan, B.; Alur, M. Int. J. Food Sci. Nutr. 2004, 55, 291-299. DOI: 10.1080/09637480412331290503 DOI: https://doi.org/10.1080/09637480412331290503

Iqbal, Q.; Amjad, M.; Asi, M. R.; Nawaz, A.; Khan, S. M.; Arino, A.; Ahmad, T. Foods. 2016, 5, 63 DOI: 10.3390/foods5030063 DOI: https://doi.org/10.3390/foods5030063

de Jesus Ornelas-Paz, J.; Castaneda-Jimenez, A. C.; Estrada-Alvarado, M. I.; Ramos-Aguilar, O. P.; Ibarra-Junquera, V.; Perez-Martinez, J. D.; Escalante-Minakata, P.; Guevara-Arauza, J. C.; Ruiz-Cruz, S. J. Food Sci. Technol. 2015, 52, 6415-6424. DOI: 10.1007/s13197-015-1749-8 DOI: https://doi.org/10.1007/s13197-015-1749-8

Meckelmann, S. W.; Riegel, D. W.; van Zonneveld, M. J.; Rios, L.; Pena, K.; Ugas, R.; Quinonez, L.; Mueller-Seitz, E.; Petz, M. J. Agric. Food Chem. 2013, 61, 2530-2537. DOI: 10.1021/jf304986q DOI: https://doi.org/10.1021/jf304986q

Kamal, M.M.; Ali, M.R.; Rahman, M. M.; Shishir, M. R. I.; Yasmin, S.; Sarker, M. S. H. J. Food Sci. Technol. 2019, 56, 3185-3194. DOI: 10.1007/s13197-019-03733-6 DOI: https://doi.org/10.1007/s13197-019-03733-6

Olatunji, T. L.; Afolayan, A.J. Int. J. Veg. Sci. 2019, 26, 190-207. DOI: 10.1080/19315260.2019.1629519 DOI: https://doi.org/10.1080/19315260.2019.1629519

Maurya, V. K.; Gothandam, K. M.; Ranjan, V.; Shakya, A.; Pareek, S. J. Sci. Food Agric. 2018, 98, 3492-3500. DOI: 10.1002/jsfa.8868 DOI: https://doi.org/10.1002/jsfa.8868

Speranza, G.; Lo Scalzo, R.; Morelli, C. F.; Rabuffetti, M.; Bianchi, G. J. Food Biochem. 2019, 43, e13031. DOI: 10.1111/jfbc.13031 DOI: https://doi.org/10.1111/jfbc.13031

Sharma, R.; Joshi, V. K.; Kaushal, M. J. Food Sci. Technol. 2015, 52, 3433-3439. DOI: 10.1007/s13197-014-1374-y DOI: https://doi.org/10.1007/s13197-014-1374-y

Wang, J.; Yang, X. H.; Mujumdar, A. S.; Fang, X. M.; Zhang, Q.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Food Chem. 2018, 259, 65-72. DOI: 10.1016/j.foodchem.2018.03.123 DOI: https://doi.org/10.1016/j.foodchem.2018.03.123

Alvarez-Parrilla, E.; de la Rosa, L.A.; Amarowicz, R.; Shahidi, F. J. Agric. Food Chem. 2011, 59, 163-173. DOI: 10.1021/jf103434u DOI: https://doi.org/10.1021/jf103434u

Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. Molecules. 2020, 25, 4287. DOI: 10.3390/molecules25184287 DOI: https://doi.org/10.3390/molecules25184287

Gupta, S.; Bains, K. Food Nutr. Bull. 2006, 27, 306-310. DOI: 10.1177/156482650602700404 DOI: https://doi.org/10.1177/156482650602700404

Yalim, S.; Ozdemir, Y. Int. J. Food Sci. Nutr. 2003, 54, 291-296. DOI: 10.1080/09637480120092116 DOI: https://doi.org/10.1080/09637480120092116

Park, J.; Kim, S.; Moon, B. J. Food Sci. 2011, 76, C1075-C1080. DOI: 10.1111/j.1750-3841.2011.02297.x DOI: https://doi.org/10.1111/j.1750-3841.2011.02297.x

Hwang, I. G.; Shin, Y. J.; Lee, S.; Lee, J.; Yoo, S.M. Prev. Nutr. Food Sci. 2012, 17, 286-292. DOI: 10.3746/pnf.2012.17.4.286 DOI: https://doi.org/10.3746/pnf.2012.17.4.286

×

Downloads

Published

2023-07-01

Issue

Section

Special issue. Celebrating Prof. Víctor M. Loyola Vargas career
x

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Loading...