An Efficient and Stable Electrochemical Sensor Based on PtPd/CZO (CuO-doped ZnO) Synergistically Modified Electrode for ppb-level Formaldehyde Detection
DOI:
https://doi.org/10.29356/jmcs.v70i1.2490Keywords:
Alloy, Pd, hydrogenationAbstract
Abstract. An efficient formaldehyde (FA) detection system was developed through the functionalization of a glassy carbon electrode (GCE) with PtPd nanoparticles and CuO-doped ZnO (CZO) composite. A comprehensive suite of analytical techniques was employed to investigate the composite materials' morphology and electrocatalytic performance. The findings indicated that the bandgap energy and resistance value (Rct + Rp) of PtPd/CZO nanoparticles (NPs) were 1.95 eV and 912.61 Ω, respectively, which are lower than those of CZO NPs. This indicates a higher surface electron transfer rate and enhanced catalytic properties for PtPd/CZO NPs. The electrocatalytic oxidation performance of the PtPd/CZO/GCE were thoroughly evaluated. The PtPd/Nafion/GCE sensor exhibited remarkable electrocatalytic performance toward formaldehyde electro-oxidation within a 0.1 M sulfuric acid medium, showing a linear response between 50.0 and 7000.0 µM along with a detection threshold of 5.8 µM. This sensor offers exceptional stability and reliability, with its practical application value proven through experiences.
Resumen. Se desarrolló un sistema eficiente de detección de formaldehído (FA) mediante la funcionalización de un electrodo de carbono vítreo (ECV) con nanopartículas de PtPd y con un compuesto de ZnO (CZO) dopado con CuO. Se empleó un conjunto completo de técnicas analíticas para investigar la morfología y el rendimiento electrocatalítico de los materiales compuestos. Los resultados indicaron que la energía de banda prohibida y el valor de resistencia (Rct + Rp) de las nanopartículas (NP) de PtPd/CZO fueron de 1,95 eV y 912,61 Ω, respectivamente, inferiores a los de las NP de CZO. Esto indica una mayor tasa de transferencia de electrones en la superficie y mejores propiedades catalíticas para las NP de PtPd/CZO. Se evaluó exhaustivamente el rendimiento de la oxidación electrocatalítica en PtPd/CZO/ECV. El sensor PtPd/Nafion/GCE mostró un rendimiento electrocatalítico excepcional en la electrooxidación de formaldehído en un medio de ácido sulfúrico 0,1 M, con una respuesta lineal entre 50,0 y 7000,0 µM, y un umbral de detección de 5,8 µM. Este sensor ofrece una estabilidad y fiabilidad excepcionales, con un valor práctico comprobado por la experiencia.
Downloads
References
1. Silva, A. M.; Castelo-Branco, I. M.; Quinta-Ferreira, R. M.; Levec, J. Chem.Eng. Sci. 2003, 58, 963-970. DOI: https://doi.org/10.1016/S0009-2509(02)00636-X
2. Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Toxicol.Pathol. 2013, 41, 181-189.
3. Malakhova, N.; Mozharovskaia, P.; Kifle, A. B.; Kozitsina, A. Anal. Methods. 2022, 14, 3423-3433.
4. Kurth, T.; Holtmann, G.; Neufang-Hüber, J.; Gerken, G.; Diener, H. J. Cephalalgia. 2006, 26, 506-510. DOI: https://doi.org/10.1111/j.1468-2982.2005.01076.x
5. Mavromichalis, I. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 365,366. DOI: https://doi.org/10.1097/00005176-199703000-00026
6. Hwang, H.-S.; Choi, H.-S.; Bin, J.-H.; Kim, Y.-H.; Lee, I.-G.; Chung, S.-Y. Journal of the Korean Child Neurology Society. 2008, 169-174.
7. Liu, Q.; Yang, L.; Gong, C.; Tao, G.; Huang, H.; Liu, J.; Zhang, H.; Wu, D.; Xia, B.; Hu, G. Toxicol. Lett 2011, 205, 235-240. DOI: https://doi.org/10.1016/j.toxlet.2011.05.1039
8. Vellingiri, K.; Deep, A.; Kim, K.-H.; Boukhvalov, D. W.; Kumar, P.; Yao, Q. J. S. Sensors Actuators B: Chem. 2017, 241, 938-948. DOI: https://doi.org/10.1016/j.snb.2016.11.017
9. E. F. S. A. J. E. EFSA J. 2011, 9, 2097. DOI: https://doi.org/10.2903/j.efsa.2011.2097
10. Chu, Z.-X.; Song, Q.; Zhang, Y.-Q.; Jiang, J. Coord. Chem. Rev. 2023, 495, 215338. DOI: https://doi.org/10.1016/j.ccr.2023.215338
11. Ai, J.; Cui, Y.; Ren, M.; Liu, K.; Wang, S.; Wu, Q.; Wang, X.; Kong, F. J. Microchem. J. 2024, 110902. DOI: https://doi.org/10.1016/j.microc.2024.110902
12. Wang, Z.; Li, M.; Xu, S.; Sun, L.; Li, L. J. Anal. Chim. Acta. 2024, 1318, 342905.
13. Roy, S.; Pan, S.; Choudhury, N.; Sivaram, S.; De, P. Eur. Polym. J. 2024, 113241. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113241
14. Gibson, L.; Kerr, W.; Nordon, A.; Reglinski, J.; Robertson, C.; Turnbull, L.; Watt, C.; Cheung, A.; Johnstone, W. Anal. Chim. Acta. 2008, 623, 109-116. DOI: https://doi.org/10.1016/j.aca.2008.06.002
15. Azizi, S. N.; Ghasemi, S.; Amiripour, F. J. S. Sensors Actuators B: Chem. 2016, 227, 1-10. DOI: https://doi.org/10.1016/j.snb.2015.11.142
16. Ganesh, V. J. Opt. Mater. 2022, 132, 112834. DOI: http://dx.doi.org/10.1016/j.optmat.2022.112834
17. Vinosha, P. A.; Mely, L. A.; Jeronsia, J. E.; Krishnan, S.; Das, S. J. Optik. 2017, 134, 99-108. DOI: https://doi.org/10.1016/j.ijleo.2017.01.018
18. Liu, J.; Chen, Y.; Zhang, H. Sensors Actuators B: Chem. 2021, 21, 4685. DOI: https://doi.org/10.3390/s21144685
19. Li, S.; Yu, L.; Zhang, C.; Li, X.; Cao, L.; Du, H.; Fan, X. Sensors Actuators B: Chem. 2024, 136179. DOI: https://doi.org/10.1016/j.snb.2024.136179
20. Yang, Y.; Kim, S.; Kim, K.; Jung, D. G.; Jung, D. Surf. Interfaces. 2024, 46, 104131. DOI: https://doi.org/10.1016/j.surfin.2024.104131
21. Mariammal, R.; Ramachandran, K. J. Mater. Res. Bull. 2018, 100, 420-428.DOI: https://doi.org/10.1016/j.materresbull.2017.12.046
22. Di̇ltemi̇z, S. E. r.; Ecevi̇t, K. J. Alloys Compd. 2019, 783, 608-616. DOI: https://doi.org/10.1016/j.jallcom.2018.12.237
23. Li, G.; Zhang, W.; Luo, N.; Xue, Z.; Hu, Q.; Zeng, W.; Xu, J. Nanomaterials. 2021, 11, 1926. DOI: https://doi.org/10.3390/nano11081926
24. Liu, X.; Wang, D.; Li, Y. Nano Today. 2012, 7, 448-466. DOI: https://doi.org/10.1016/j.nantod.2012.08.003
25. Nguyen, T. T.; Van Dao, D.; Ha, N. T. T.; Van Tran, T.; Kim, D.-S.; Yoon, J.-W.; Ha, N. N.; Lee, I.-H.; Yu, Y.-T. J. S. Sensors Actuators B: Chem. 2022, 354, 131083.
26. Cai, T.; Zhang, H.; Xing, H.; Xia, X.; Zhang, Z.; Zhang, K.; Chen, H.; Ye, Y.; Guo, W.; Huang, H. J. J. Electron. Mater. 2023, 52, 4959-4970. DOI: https://doi.org/10.1007/s11664-023-10418-6
27. Zhao, X.; Liu, Y.; Deng, J.; Xu, P.; Yang, J.; Zhang, K.; Han, Z.; Dai, H. Mol. Catal. 2017, 442, 191-201. DOI: https://doi.org/10.1016/j.mcat.2017.09.002
28. Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H.-T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Nat. Catal. 2019, 2, 78-85. DOI: https://doi.org/10.1038/s41929-018-0190-6
29. Luo, M.; Wang, F.; Liu, Q.; Li, W.; Shao, C.; Liu, X.; Ai, B. React. Kinet. Mech. 2023, 136, 2039-2051. DOI: https://doi.org/10.1007/s11144-023-02437-5
30. Raveendran, A.; Chandran, M.; Dhanusuraman, R. RSC Adv. 2023, 13, 3843-3876. DOI: https://doi.org/10.1039/D2RA07642J
31. Ali, S. M. Sci. Rep. 2025, 15. DOI: https://doi.org/10.1038/s41598-024-84727-z
32. Jin, X.; Zhao, X.; Huang, K. J. Power Sources. 2015, 280, 195-204. DOI: https://doi.org/10.1016/j.jpowsour.2015.01.080
33. Liu, Y.; Zhang, H.; Ju, A.; Li, P.; Qu, X.J. J. Energy Storage. 2024, 104, 114731. DOI: https://doi.org/10.1016/j.est.2024.114731
34. Thanh, T. S.; Tu, N. T. T.; Quy, P. T.; Toan, T. T. T.; Thanh, N. M.; Nguyen, V. T.; Tuan, N. H.; Nhiem, D. N.; Lieu, P. K.; Khieu, D. Q. ECS J. Solid State Sci. Technol. 2021, 10, 117001. DOI: http://dx.doi.org/10.1149/2162-8777/ac372c
35. Eixenberger, J. E.; Anders, C. B.; Hermann, R. J.; Brown, R. J.; Reddy, K. M.; Punnoose, A.; Wingett, D. G. Chem. Res. Toxicol. 2017, 30, 1641-1651. DOI: https://doi.org/10.1021/acs.chemrestox.7b00136
36. Shubha, J.; Roopashree, B.; Patil, R.; Khan, M.; Shaik, M. R.; Alaqarbeh, M.; Alwarthan, A.; Karami, A. M.; Adil, S. F. Arab. J. Chem. 2023, 16, 104547-104554. DOI: http://dx.doi.org/10.1016/j.arabjc.2023.104547
37. Al-Rasheidi, M.; Khan, F.; Al-Ahmed, A.; Rehman, S.; Al-Sulaiman, F. Opt. Mater. 2022, 126, 112144. DOI: https://doi.org/10.1016/j.optmat.2022.112144
38. Chen, Z.; Jaramillo, T. F. J. D. o. C. E. Chem. Eng. J. 2017, 9, 19.
39. Jubu, P.; Yam, F.; Igba, V.; Beh, K. J. J. Solid State Chem. 2020, 290, 121576. DOI: https://doi.org/10.1016/j.jssc.2020.121576
40. Li, J.; Yuan, Z.; Mu, Z.; Yang, Z.; Meng, F. J. S. Sensors Actuators B: Chem. 2024, 405, 135404. DOI: https://doi.org/10.1016/j.snb.2024.135404
41. Ye, L.; Liang, Y. Physica B. 2024, 674, 415579. DOI: https://doi.org/10.1016/j.physb.2023.415579
42. Hu, Y.; Anandkumar, M.; Joardar, J.; Wang, X.; Deshpande, A. S.; Reddy, K. M. Sci. Rep. 2023, 13, 2362. DOI: https://doi.org/10.1038/s41598-023-29477-0
43. Ivanova, T.; Maslakov, K.; Sidorov, A.; Kiskin, M.; Linko, R.; Savilov, S.; Lunin, V.; Eremenko, I. J. Electron. Spectrosc. Relat. Phenom. 2020, 238, 146878. DOI: https://doi.org/10.1016/j.elspec.2019.06.010
44. González-Meza, O.; Larios-Durán, E.; Gutiérrez-Becerra, A.; Casillas, N.; Escalante, J.; Bárcena-Soto, M. J. ECS Solid State Electrochem. 2019, 23, 3123-3133. DOI: https://doi.org/10.1007/s10008-019-04410-6
45. Lv, J.-J.; Wisitruangsakul, N.; Feng, J.-J.; Luo, J.; Fang, K.-M.; Wang, A.-J. Electrochim. Acta. 2015, 160, 100-107. V. DOI: https://doi.org/10.1016/j.electacta.2015.02.052
46. Rahman, M. M. Sensors Actuators B: Chem. 2020, 305, 127541. DOI: https://doi.org/10.1016/j.snb.2019.127541
47. Xu, S.; Jiang, L.; Huang, X.; Ju, W.; Liang, Y.; Tao, Z.; Yang, Y.; Zhu, B.; Wei, G. Nanotechnology. 2023, 35, 025704. DOI: http://dx.doi.org/10.1088/1361-6528/ad0124
48. Ma, R.; Wu, F.; Yue, J.; Zhao, W.; Yan, J.; Cui, H.; Feng, P.; Peng, X. Microchem. J. 2024, 205.DOI: https://doi.org/10.1016/j.microc.2024.111234
49. Becker, A.; Andrikopoulou, C.; Bernhardt, P.; Trocquet, C.; Le Calvé, S., Chemosensors. 2020, 8. DOI: https://doi.org/10.3390/chemosensors8030057
50. Hornshøj, B. H.; Kobbelgaard, S.; Blakemore, W. R.; Stapelfeldt, H.; Bixler, H. J.; Klinger, M. Food Addit. Contam. A. 2015, 32, 152-160. DOI: https://doi.org/10.1080/19440049.2014.992049
51. de Freitas Rezende, F. B.; Cheibub, A. M. d. S. S.; Netto, A. D. P.; de Carvalho Marques, F. Microchem. J. 2017, 134, 383-389.
52. Shin, J.; Jeong, B.; Chinannai, M. F.; Ju, H. Electrochim. Acta. 2021, 390, 138858. DOI: https://doi.org/10.1016/j.electacta.2021.138858
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Siyu Chen, Li Jiang, Yahong Luo, Xiaowei Huang, Fan Zhang, Zhu Tao, Yanxia Liang, Jiao Liu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.







