Hydrogen Release from NH3 in the Presence of BN Graphene: DFT Studies

Authors

  • Zargham Bagheri Department of Physics, College of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran

DOI:

https://doi.org/10.29356/jmcs.v59i1.17

Keywords:

Boron Nitride Nanosheet, Graphene-like, DFT, B3LYP, Ammonia

Abstract

Using density functional theory, we investigated the interaction
of an NH3 molecule with a pristine and antisite defected BN sheet
(g-BN) in terms of energetic, geometric, and electronic properties.
The adsorption energy of NH3 on defected g-BN was calculated to be
in the range of −0.70 to −2.46 eV, which is considerably more negative
than that on the pristine sheet. It was found that the adsorption
of NH3 adsorption on the defected sheet may cause the release of an
H2 molecule. The electronic properties of the defected BN sheet were
significantly changed after the adsorption process so that its HOMO/
LUMO energy gap was changed from 3.31 to 3.60-4.97 eV. Moreover,
the Fermi level of the defected sheet shifts to higher energies after the
interaction, which results in reduced potential barrier of the electron
emission for the sheet surface, enhancing the field emission because
of the decreased work function.

Downloads

Download data is not yet available.

References

Ni, M.; Leung, M.K.H.; Sumathy, K.; Leung, D.Y.C. Int. J. Hydrogen

Energy 2006, 31, 1401-1412. DOI: https://doi.org/10.1016/j.ijhydene.2005.11.005

Baei, M.T.; Peyghan, A.A.; Bagheri, Z. C.R. Chimie 2013, 16, DOI: https://doi.org/10.1016/j.crci.2012.09.010

-128.

Goltsov, V.A.; Veziroglu, T.N.; Goltsov, L.F. Int J Hydrogen

Energy 2006, 31, 153-159. DOI: https://doi.org/10.1525/azt.2006.31.1.153

Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K.L. Nature 2002, 420, DOI: https://doi.org/10.1038/nature01210

-304.

Amendola, S.C.; Sharp-Goldman, S.L.; Janjua, M.S.; Kelly,

M.T.; Petillo, P.J.; Binder, M. J. Power Sources 2000, 85, 186- DOI: https://doi.org/10.1016/S0378-7753(99)00301-8

Raissi, A.T.; Danz, R. Analysis of hydrogen production using

ammonia and ammonia-borane complex for fuel cell applications.

Hydrogen, Fuel Cells, and Infrastructure Technology Program,

FY, Progress Report, DOE, 2002.

Iijima, S. (1991) Nature 354, 56-58. DOI: https://doi.org/10.1038/354056a0

Peyghan, A.A.; Omidvar, A.; Hadipour, N.L.; Bagheri Z.; Kamfiroozi,

M. Physica E 2012, 44, 1357-1360. DOI: https://doi.org/10.1016/j.physe.2012.02.018

Ahmadi, A.; Hadipour, N.L.; Kamfiroozi, M.; Bagheri, Z. Sens.

Actuat B-Chem. 2012, 161, 1025-1029. DOI: https://doi.org/10.1016/j.snb.2011.12.001

Rogel-Hernandez, E.; Alonso-Nonez, G.; Camarena, J.P.; Espinoza-

Gomez, G.A.; Paraguay-Delgado, P.; Somanthan, R. J. Mex. Chem. Soc. 2011, 55, 7-10.

Alonso, J.A.; Cabria, I.; Lopez, M.J. J. Mex. Chem. Soc. 2012, 56,

-269.

Beheshtian, J.; Kamfiroozi, M.; Bagheri, Z.; Ahmadi, A. Physica

E 2011, 44, 546-549.

Beheshtian, J.; Peyghan, A. A.; Bagheri, Z. J. mol. model. 2012,

, 391-396.

Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang,

Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Science 2004,

, 666-669.

Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson,

M.I.; Grigorieva, I.V.; Dubono, S.V.; Firsov, A.A. Nature

, 438, 197-200.

Wang, Z.; Gao, Y.; Xia, J.; Zhang, F.; Xia, Y.; Li, Y. C.R. Chimie

, 15, 708-713.

Peyghan, A. A.; Hadipour, N.; Bagheri, Z., J. Phys. Chem. C 2013,

, 2427-2432.

Beheshtian, J.; Peyghan, A. A.; Bagheri, Z., Struct. Chem. 2013,

, 1565-1570.

Peyghan, A. A.; Moradi, M., Thin Solid Films 2014, 552, 111- DOI: https://doi.org/10.1016/j.tsf.2013.12.050

Lehtinen, P.O.; Foster, A.S.; Ayuela, A.; Krasheninnikov, A.;

Nordlund, K.; Nieminen, R.M. Phys. Rev. Lett. 2003, 91, 017202-

Choi, H.; Park, Y.C.; Kim, Y. H.; Lee, Y.S. J. Am. Chem. Soc.

, 133, 2084-2087.

Peyghan, A. A.; Moradi, M., J. Mol. Model. 2014, 20, 1-7. DOI: https://doi.org/10.1007/s00894-014-2071-5

Nag, A.; Raidongia, K.; Hembram, K.P.S.S.; Datta, R.; Wanghmare,

U.V.; Rao, C.N.R. ACS Nano 2010, 4, 1539-1544. DOI: https://doi.org/10.1021/nn9018762

Beheshtian, J.; Soleymanabadi, H.; Peyghan, A.A.; Bagheri, Z.

Appl. Surf. Sci. 2012, 268, 436-441.

Preobrajenski, A.B.; Nesterov, M.A.; Ng, M.L.; Vinogradov, A.S.;

Mårtensson, N. Chem. Phys. Lett. 2007, 446, 119-123. DOI: https://doi.org/10.1016/j.cplett.2007.08.028

Beheshtian, J.; Soleymanabadi, H.; Peyghan, A. A.; Bagheri, Z.,

Applied Surface Science 2012, 268, 436-441. DOI: https://doi.org/10.1016/j.apsusc.2012.12.119

Peyghan, A. A.; Noei, M.; Yourdkhani, S., Superlattices Microstruct.

, 59, 115-122.

Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon,

M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.; Montgomery, J.A. J. Comput.

Chem. 1993, 14, 1347-1363. DOI: https://doi.org/10.1002/jcc.540141112

O’Boyle N. M.; Tenderholt A.L.; Langner K.M., J. Comput.

Chem. 2008, 29, 839-845. DOI: https://doi.org/10.1007/s10762-008-9385-2

Soltani, A.; Taghartapeh, M.R.; Tazikeh Lemeski, E.; Abroudi,

M.; Mighani, H. Superlattic. Microstruct. 2013, 58, 178-190. DOI: https://doi.org/10.1016/j.spmi.2013.02.015

Pan, S.; Banerjee, S.; Chattaraj, P.K. J. Mex. Chem. Soc. 2012, 56,

-240.

Owens, F.J. Matter. Lett. 2007, 61, 1997-1999. DOI: https://doi.org/10.1016/j.matlet.2006.08.003

Peyghan, A.A.; Noei, M. J. Mex. Chem. Soc. 2014, 58, 46-51.

Tomi? S.; Montanari B.; Harrison N. M. Physica E 2008, 40, DOI: https://doi.org/10.1016/j.physe.2007.10.022

-2127.

Golberg D.; Bando Y.; Huang Y.; Terao T.; Mitome M.; Tang C.;

Zhi C. Acs Nano 2010, 4, 2979-2993. DOI: https://doi.org/10.1021/nn1006495

Kim Y. H.; Zhao Y.; Williamson A.; Heben M. J.; Zhang S. B.

Phys. Rev. Lett. 2006, 96, 016102-016106.

Ye D.; Moussa S.; Ferguson J. D.; Baski A. A.; El-Shall M. S.

Nano Lett. 2012, 12, 1265-1268. DOI: https://doi.org/10.1021/nl203742s

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Loading...