Enhanced Enzymatic Saccharification of Mixed Sawdust Wastes: Comparison of SPORL, Dilute Acid, Formic Acid, and Ethanol Organosolv Pretreatments
DOI:
https://doi.org/10.29356/jmcs.v65i3.1427Keywords:
Mixed sawdust wastes, pretreatments, enzymatic hydrolysis, delignificationAbstract
Abstract. Utilization of the huge quantity of sawdust wastes is urgent. In this study, SPORL, dilute acid pretreatment (DA), formic acid pretreatment (FA), ethanol pretreatment (EtOH/H2O), and sulfuric acid catalyzed ethanol pretreatment (EtOH/H2O/H2SO4), on improving enzymatic hydrolysis of mixed sawdust wastes were comprehensively compared. EtOH/H2O/H2SO4 was the most effective pretreatment in lignin removal from sawdust fiber cell wall, while FA was much more effective in hemicellulose removal. After the pretreatments, the crystallinity of cellulose increased because of the removal of amorphous hemicellulose and lignin. Moreover, the fiber surface became coarse and porous, especially after EtOH/H2O/H2SO4, the structure was destroyed into fragments, which enhanced the cellulase accessibility of cellulose. Therefore, the glucose yield of EtOH/H2O/H2SO4 pretreated substrate was highest among these five pretreatments, achieved at 91.4% with a cellulase loading of only 10 FPU/g glucan.
Resumen. Es urgente aprovechar la gran cantidad de residuos de aserrín. En este estudio, SPORL, pretratamiento con ácido diluido (DA), pretratamiento con ácido fórmico (FA), pretratamiento con etanol (EtOH/H2O) y pretratamiento con etanol catalizado con ácido sulfúrico (EtOH/H2O/H2SO4), sobre la mejora de la hidrólisis enzimática de residuos de aserrín mezclado fueron comparados de manera integral. EtOH/H2O/H2SO4 fue el pretratamiento más eficaz para eliminar la lignina de la pared celular de la fibra de aserrín, mientras que el FA fue mucho más eficaz para eliminar la hemicelulosa. Después de los pretratamientos, la cristalinidad de la celulosa aumentó debido a la eliminación de hemicelulosa amorfa y lignina. Además, la superficie de la fibra se volvió gruesa y porosa, especialmente después de EtOH/H2O/H2SO4, la estructura se destruyó en fragmentos, lo que mejoró la accesibilidad de celulasa de la celulosa. Por lo tanto, el rendimiento de glucosa del sustrato pretratado con EtOH/H2O/H2SO4 fue el más alto entre estos cinco pretratamientos, alcanzado al 91,4% con una carga de celulasa de solo 10 FPU / g de glucano.
Downloads
References
Sikarwar, V. S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M. Z.; Shah, N.; Anthony, E. J.; Fennell, P. S. Energy Environ. Sci. 2016, 9, 2939-2977. DOI: https://doi.org/10.1039/C6EE00935B
Wang, Z.; Hou, X.; Sun, J.; Li, M.; Chen, Z.; Gao, Z. Bioresource. Technol. 2018, 254, 145-150. DOI: https://doi.org/10.1016/j.biortech.2018.01.021
Heinimö, J.; Pakarinen, V.; Ojanen, V.; Kässi, T. International bioenergy trade-scenario study on international biomass market in 2020. Lappeenranta University of Technology, Finland, 2007.
Shaheen, T. I.; Emam, H. E. Int. J. Biol. Macromol. 2018, 107, 1599-1606. DOI: https://doi.org/10.1016/j.ijbiomac.2017.10.028
Asada, C.; Sasaki, C.; Nakamura, Y. Waste Biomass Valorization. 2019, 10, 433-439. DOI: https://doi.org/10.1007/s12649-017-0073-0
Ruiz Cuilty, K.; Ballinas Casarrubias, L.; Rodríguez de San Miguel, E.; de Gyves, J.; Robles Venzor, J. C.; González Sánchez, G. Biomass Bioenergy. 2018, 111, 114-124. DOI: https://doi.org/10.1016/j.biombioe.2018.02.004
Zhao, X.; Zhang, L.; Liu, D. Biofuels, Bioprod. Bioref. 2012, 6, 465-482. DOI: https://doi.org/10.1002/bbb.1331
Sun, Y.; Cheng ,J. Bioresource. Technol. 2002, 83, 1-11. DOI: https://doi.org/10.1016/S0960-8524(01)00212-7
Zhao, X.; Zhang, L.; Liu, D. Biofuels, Bioprod. Bioref. 2012, 6, 561-579. DOI: https://doi.org/10.1002/bbb.1350
Zabed, H.; Sahu, J. N.; Suely, A.; Boyce, A. N.; Faruq, G. Renewable Sustainable Energy Rev. 2017, 71, 475-501. DOI: https://doi.org/10.1016/j.rser.2016.12.076
Zhang, J.; Zhou, H.; Liu, D.; Zhao, X., in Lignocellulosic Biomass to Liquid Biofuels, A. Yousuf, D. Pirozzi, F. Sannino, Academic Press, 2020, 17-65. DOI: https://doi.org/10.1016/B978-0-12-815936-1.00002-2
Dziekonska Kubczak, U.; Berlowska, J.; Dziugan, P.; Patelski, P.; Balcerek, M.; Pielech Przybylska, K.; Czyzowska, A.; Domanski, J. BioResources. 2018, 13, 6970-6984. DOI: https://doi.org/10.15376/biores.13.3.6970-6984
Jin, S.; Zhang, G.; Zhang, P.; Li, F.; Fan, S.; Li, J. Bioresource. Technol. 2016, 205, 34-39. DOI: https://doi.org/10.1016/j.biortech.2016.01.019
Lai, C.; Yang, B.; He, J.; Huang, C.; Li, X.; Song, X.; Yong, Q. Bioresource. Technol. 2018, 269, 18-24. DOI: https://doi.org/10.1016/j.biortech.2018.08.086
Zhu, J. Y.; Pan, X. J.; Wang, G. S.; Gleisner, R. Bioresource. Technol. 2009, 100, 2411-2418. DOI: https://doi.org/10.1016/j.biortech.2008.10.057
Zhou, H.; Zhu, J. Y.; Luo, X.; Leu, S.-Y.; Wu, X.; Gleisner, R.; Dien, B. S.; Hector, R. E.; Yang, D.; Qiu, X.; Horn, E.; Negron, J. Ind. Eng. Chem. Res. 2013, 52, 16057-16065. DOI: https://doi.org/10.1021/ie402873y
Zhou, H.; Zhu, J. Y.; Gleisner, R.; Qiu, X.; Horn, E.; Negrón, J. Holzforschung. 2016, 70, 21-30. DOI: https://doi.org/10.1515/hf-2014-0332
Chen, H.; Zhao, J.; Hu, T.; Zhao, X.; Liu, D. Appl. Energ. 2015, 150, 224-232. DOI: https://doi.org/10.1016/j.apenergy.2015.04.030
López, F.; Pérez, A.; García, J. C.; Feria, M. J.; García, M. M.; Fernández, M. Chem. Eng. J. 2011, 166, 22-29. DOI: https://doi.org/10.1016/j.cej.2010.08.039
Salapa, I.; Katsimpouras, C.; Topakas, E.; Sidiras, D. Biomass Bioenergy. 2017, 100, 10-16. DOI: https://doi.org/10.1016/j.biombioe.2017.03.011
Li, Z. Q.; Jiang, Z. H.; Fei, B. H.; Pan, X. J.; Cai, Z. Y.; Liu, X. E.; Yu ,Y. BioResources. 2012, 7, 3452-3462. DOI: https://doi.org/10.15376/biores.7.3.3452-3462
Zhao, X.; Liu, D. Bioresource. Technol. 2012, 117, 25-32. DOI: https://doi.org/10.1016/j.biortech.2012.04.062
Mou, H.; Wu, S. Cellulose. 2017, 24, 85-94. DOI: https://doi.org/10.1007/s10570-016-1117-5
Wood, T. M.; Bhat, K. M. Method. Enzymol. 1988, 160, 87-112. DOI: https://doi.org/10.1016/0076-6879(88)60109-1
Zhou, H.; Zhu, J. Y.; Gleisner, R.; Qiu, X.; Horn, E.; Sukumaran, R. K. Frontiers in Energy Research. 2015, 3, 16. DOI: https://doi.org/10.3389/fenrg.2015.00016
Liang, Y.; Duan, W.; An X.; Qiao, Y.; Tian, Y.; Zhou, H. Bioresource. Technol. 2020, 310, 123389. DOI: https://doi.org/10.1016/j.biortech.2020.123389
Shi, X.; Zhao, B.; Zhou, H.; Tian, Y.; Qiao, Y.; Ji, B. ChemistrySelect. 2019, 4, 7844-7850. DOI: https://doi.org/10.1002/slct.201901367
Jin, S.; Zhang, G.; Zhang, P.; Li, F.; Wang, S.; Fan, S.; Zhou, S. Bioresource. Technol. 2016, 221, 26-30. DOI: https://doi.org/10.1016/j.biortech.2016.09.033
Pan, X.; Xie, D.; Yu, R. W.; Saddler, J. N. Biotechnol. Bioeng. 2008, 101, 39-48. DOI: https://doi.org/10.1002/bit.21883
Cui, X.; Zhao, X.; Zeng, J.; Loh, S. K.; Choo, Y. M.; Liu, D. Bioresource. Technol. 2014, 166, 584-591. DOI: https://doi.org/10.1016/j.biortech.2014.05.102
Sindhu, R.; Binod, P.; Satyanagalakshmi, K.; Janu, K. U.; Sajna, K. V.; Kurien, N.; Sukumaran, R. K.; Pandey, A. Appl. Biochem. Biotech. 2010, 162, 2313-2323. DOI: https://doi.org/10.1007/s12010-010-9004-2
Pan X.; Xie D.; Gilkes N.; Gregg D. J.; Saddler J. N., in Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, B. H. Davison, B. R. Evans, M. Finkelstein, J. D. McMillan, Humana Press, Totowa, NJ, 2005, 1069-1079.
Pielhop, T.; Larrazábal, G. O.; Studer, M. H.; Brethauer, S.; Seidel, C.-M.; von Rohr, P. R. Green Chem. 2015, 17, 3521-3532. DOI: https://doi.org/10.1039/C4GC02381A
Hsu, T. C.; Guo, G. L.; Chen, W. H.; Hwang, W. S. Bioresource. Technol. 2010, 101, 4907-4913. DOI: https://doi.org/10.1016/j.biortech.2009.10.009
Huijgen, W. J. J.; Smit, A. T.; Reith, J. H.; Uil, H. d. J. Chem. Technol. Biotechnol. 2011, 86, 1428-1438. DOI: https://doi.org/10.1002/jctb.2654
Zhang, H.; Zhang, S.; Yuan, H.; Lyu, G.; Xie, J. Bioresource. Technol. 2018, 249, 395-401. DOI: https://doi.org/10.1016/j.biortech.2017.10.053
Valenzuela, R.; Priebe, X.; Troncoso, E.; Ortega, I.; Parra, C.; Freer, J. Ind. Crop. Prod. 2016, 86, 79-86. DOI: https://doi.org/10.1016/j.indcrop.2016.03.037
Sannigrahi, P.; Kim, D. H.; Jung, S.; Ragauskas, A. Energy Environ. Sci. 2011, 4, 1306-1310. DOI: https://doi.org/10.1039/C0EE00378F
Li, H.-Y.; Chen, X.; Wang, C.-Z.; Sun, S.-N.; Sun, R.-C. Biotechnol. Biofuels. 2016, 9, 166. DOI: https://doi.org/10.1186/s13068-016-0578-y
Li, W.; Liu, Q.; Ma, Q.; Zhang, T.; Ma, L.; Jameel, H.; Chang, H.-m. Bioresource. Technol. 2016, 219, 753-756. DOI: https://doi.org/10.1016/j.biortech.2016.08.025
Ebrahimi, M.; Caparanga, A. R.; Ordono, E. E.; Villaflores O. B. Renew. Energ. 2017, 109, 41-48. DOI: https://doi.org/10.1016/j.renene.2017.03.011
He, Y.; Pang, Y.; Liu, Y.; Li X.; Wang, K. Energ. Fuel. 2008, 22, 2775-2781. DOI: https://doi.org/10.1021/ef8000967
Xiao, B.; Sun, X. F.; Sun, R. Polym. Degrad. Stabil. 2001, 74, 307-319. DOI: https://doi.org/10.1016/S0141-3910(01)00163-X


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
