Non-Isocyanide-Based Three-Component Reactions: From Strecker to Nowadays

Authors

  • Ivette Morales-Salazar Universidad Autónoma Metropolitana-Iztapalapa
  • Jean-Philippe Bouillon Univ. Rouen Normandie
  • Eduardo González-Zamora Universidad Autónoma Metropolitana-Iztapalapa
  • Alejandro Islas-Jácome Universidad Autónoma Metropolitana-Iztapalapa https://orcid.org/0000-0003-0975-5904

DOI:

https://doi.org/10.29356/jmcs.v69i1.2301

Keywords:

MCRs, isocyanides, multicomponent reactions, DFT-based calculations, reaction mechanisms

Abstract

Almost two centuries have passed since Strecker synthesized for the first time the α-aminoacid DL-alanine via a sequential combination of acetaldehyde with aqueous ammonia and hydrogen cyanide, coupled to a further hydrolysis of the resulting α-aminonitrile using an acid aqueous solution. Since then, a broad variety of high valued products in various fields of science and technology have been synthesized via three-component reactions (3CRs) or via one-pot methodologies involving 3CRs coupled smartly to further processes like functionalizations, condensations, cross couplings, cyclizations, ring openings, and so on. In the same way, very interesting and useful computational calculations behind understanding reaction mechanisms related to 3CRs, conformational analyses, and energy profiles have been performed. All these topics are on the scope of the present review, which covers selected and elegant based 3CRs (except for the Ugi-3CR or its variants), and other unclassified 3CR-based works from 2010 to nowadays.

 

Resumen. Han pasado casi dos siglos desde que Strecker sintetizó por primera vez el α-aminoácido DL-alanina mediante una combinación secuencial de acetaldehído con amoníaco acuoso y cianuro de hidrógeno, acoplada a una hidrólisis posterior del α-aminonitrilo resultante utilizando una solución acuosa ácida. Desde entonces, se ha sintetizado una amplia variedad de productos de gran valor en diversos campos de la ciencia y la tecnología mediante reacciones de tres componentes (3CR) o mediante metodologías en un mismo reactor que implican 3CR acopladas a procesos posteriores como funcionalizaciones, condensaciones, acoplamientos cruzados, ciclizaciones, aperturas de anillos, etc. Del mismo modo, se han realizado cálculos computacionales muy interesantes y útiles para comprender los mecanismos de reacción relacionados con 3CR, análisis conformacionales y perfiles energéticos. Todos estos temas están dentro del alcance del presente artículo de revisión, que considera trabajos seleccionados y elegantes basados en 3CRs (excepto Ugi-3CR o sus variantes), y otras 3CRs no clasificadas desde 2010 hasta la actualidad.

Downloads

Download data is not yet available.

Author Biographies

Ivette Morales-Salazar, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Jean-Philippe Bouillon, Univ. Rouen Normandie

INSA Rouen Normandie, CNRS, Normandie Univ

Eduardo González-Zamora, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Alejandro Islas-Jácome, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

References

Dӧmling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083-3135, DOI: https://doi.org/10.1021/cr100233r. DOI: https://doi.org/10.1021/cr100233r

Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Org. Biomol. Chem. 2018, 16, 1402-1418, DOI: https://doi.org/10.1039/c7ob02305g. DOI: https://doi.org/10.1039/C7OB02305G

Flores-Reyes, J. C.; Islas-Jácome, A.; González-Zamora, E. Org. Chem. Front. 2021, 8, 5460-5515, DOI: https://doi.org/10.1039/d1qo00313e. DOI: https://doi.org/10.1039/D1QO00313E

Syamala, M. Org. Prep. Proced. Int. 2009, 41, 1-68, DOI: https://doi.org/10.1080/00304940802711218. DOI: https://doi.org/10.1080/00304940802711218

Morales-Salazar, I.; Montes-Enríquez, F. P.; Garduño-Albino, C. E.; García-Sánchez, M. A.; Ibarra, I. A.; Rojas-Aguirre, Y.; García-Hernández, M. E.; Sarmiento-Silva, R. E.; Alcaraz-Estrada, S. L.; Díaz-Cervantes, E.; González-Zamora, E.; Islas-Jácome, A. RSC Med. Chem. 2023, 14, 154-165, DOI: https://doi.org/10.1039/d2md00350c. DOI: https://doi.org/10.1039/D2MD00350C

Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem. Int. Ed. Engl. 2012, 51, 10307-10310, DOI: https://doi.org/10.1002/anie.201204475. DOI: https://doi.org/10.1002/anie.201204475

Lamberth, C. Bioorg Med Chem 2020, 28, 115471-115483, DOI: https://doi.org/10.1016/j.bmc.2020.115471. DOI: https://doi.org/10.1016/j.bmc.2020.115471

Basavanag, U. M. V.; Islas-Jácome, A.; Rentería-Gómez, A.; Conejo, A. S.; Kurva, M.; Jiménez-Halla, J. O. C.; Velusamy, J.; Ramos-Ortíz, G.; Gámez-Montaño, R. New J. Chem. 2017, 41, 3450-3459, DOI: https://doi.org/10.1039/c6nj04044f. DOI: https://doi.org/10.1039/C6NJ04044F

Orru, R. V. A.; de Greef, M. Synthesis-Stuttgart 2003, 1471-1499, DOI: https://doi.org/DOI 10.1055/s-2003-40507. DOI: https://doi.org/10.1055/s-2003-40507

Ayaz, M.; De Moliner, F.; Morales, G. A.; Hulme, C. Third component cyanide (Strecker and Strecker-type reactions). In Science of synthesis: multicomponent reactions, Muller, T.J.J., Ed.; Georg Thieme Verlag: 2013; Volume 1, pp. 99-122.

Win-Mason, A. L.; Jongkees, S. A.; Withers, S. G.; Tyler, P. C.; Timmer, M. S.; Stocker, B. L. J. Org. Chem. 2011, 76, 9611-9621, DOI: https://doi.org/10.1021/jo201151b. DOI: https://doi.org/10.1021/jo201151b

Pan, F.; Chen, J. M.; Zhuang, Z.; Fang, Y. Z.; Zhang, S. X.; Liao, W. W. Org. Biomol. Chem. 2012, 10, 2214-2217, DOI: https://doi.org/10.1039/c2ob07112f. DOI: https://doi.org/10.1039/c2ob07112f

Matassini, C.; Mirabella, S.; Goti, A.; Cardona, F. Eur. J. Org. Chem. 2012, 3920-3924, DOI: https://doi.org/10.1002/ejoc.201200587. DOI: https://doi.org/10.1002/ejoc.201200587

Sadhukhan, A.; Saravanan, S.; Khan, N. U.; Kureshy, R. I.; Abdi, S. H.; Bajaj, H. C. J. Org. Chem. 2012, 77, 7076-7080, DOI: https://doi.org/10.1021/jo300642z. DOI: https://doi.org/10.1021/jo300642z

Pellissier, H. Adv. Synth. Catal. 2011, 353, 659-676, DOI: https://doi.org/10.1002/adsc.201000751. DOI: https://doi.org/10.1002/adsc.201000751

Zhao, B.; Hao, X. Y.; Zhang, J. X.; Liu, S.; Hao, X. J. Org. Lett. 2013, 15, 528-530, DOI: https://doi.org/10.1021/ol303344d. DOI: https://doi.org/10.1021/ol303344d

Grygorenko, O.; Ivon, Y.; Tymtsunik, A.; Komarov, I.; Shishkin, O. Synthesis 2015, 47, 1123-1130, DOI: https://doi.org/10.1055/s-0034-1380116. DOI: https://doi.org/10.1055/s-0034-1380116

Mitachi, K.; Aleiwi, B. A.; Schneider, C. M.; Siricilla, S.; Kurosu, M. J. Am. Chem. Soc. 2016, 138, 12975-12980, DOI: https://doi.org/10.1021/jacs.6b07395. DOI: https://doi.org/10.1021/jacs.6b07395

Indalkar, K. S.; Khatri, C. K.; Chaturbhuj, G. U. Tetrahedron Lett. 2017, 58, 2144-2148, DOI: https://doi.org/10.1016/j.tetlet.2017.04.058. DOI: https://doi.org/10.1016/j.tetlet.2017.04.058

Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010-6022, DOI: https://doi.org/10.1039/c2cs35157a. DOI: https://doi.org/10.1039/c2cs35157a

Li, X. T.; Zou, J.; Wang, T. H.; Ma, H. C.; Chen, G. J.; Dong, Y. B. J. Am. Chem. Soc. 2020, 142, 6521-6526, DOI: https://doi.org/10.1021/jacs.0c00969. DOI: https://doi.org/10.1021/jacs.0c00969

Ming, W.; Liu, X.; Friedrich, A.; Krebs, J.; Marder, T. B. Org. Lett. 2020, 22, 365-370, DOI: https://doi.org/10.1021/acs.orglett.9b03773. DOI: https://doi.org/10.1021/acs.orglett.9b03773

Baskan, C.; Erturk, A. G.; Aydin, B.; Siriken, B. Bioorg. Chem. 2022, 119, 105517-105525, DOI: https://doi.org/10.1016/j.bioorg.2021.105517. DOI: https://doi.org/10.1016/j.bioorg.2021.105517

Kappe, C. O. Acc. Chem. Res. 2000, 33, 879-888, DOI: https://doi.org/10.1021/ar000048h. DOI: https://doi.org/10.1021/ar000048h

Sandhu, S.; Sandhu, J. S. Arkivoc 2012, i, 66-133, DOI: https://doi.org/10.3998/ark.5550190.0013.103. DOI: https://doi.org/10.3998/ark.5550190.0013.103

Couto, I.; Tellitu, I.; Dominguez, E. J. Org. Chem. 2010, 75, 7954-7957, DOI: https://doi.org/10.1021/jo101797s. DOI: https://doi.org/10.1021/jo101797s

Nandi, G. C.; Samai, S.; Singh, M. S. J. Org. Chem. 2010, 75, 7785-7795, DOI: https://doi.org/10.1021/jo101572c. DOI: https://doi.org/10.1021/jo101572c

Shen, Z. L.; Xu, X. P.; Ji, S. J. J. Org. Chem. 2010, 75, 1162-1167, DOI: https://doi.org/10.1021/jo902394y. DOI: https://doi.org/10.1021/jo902394y

Saha, S.; Moorthy, J. N. J. Org. Chem. 2011, 76, 396-402, DOI: https://doi.org/10.1021/jo101717m. DOI: https://doi.org/10.1021/jo101717m

Boruah, R.; Gogoi, S.; Dutta, M.; Gogoi, J.; Shekarrao, K.; Goswami, J. Synthesis 2012, 44, 2614-2622, DOI: https://doi.org/10.1055/s-0032-1316564. DOI: https://doi.org/10.1055/s-0032-1316564

Breit, B.; Fuchs, D.; Nasr-Esfahani, M.; Diab, L.; Šmejkal, T. Synlett 2013, 24, 1657-1662, DOI: https://doi.org/10.1055/s-0033-1339298. DOI: https://doi.org/10.1055/s-0033-1339298

Sahoo, P. K.; Bose, A.; Mal, P. Eur. J. Org. Chem. 2015, 6994-6998, DOI: https://doi.org/10.1002/ejoc.201501039. DOI: https://doi.org/10.1002/ejoc.201501039

Stucchi, M.; Lesma, G.; Meneghetti, F.; Rainoldi, G.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2016, 81, 1877-1884, DOI: https://doi.org/10.1021/acs.joc.5b02680. DOI: https://doi.org/10.1021/acs.joc.5b02680

Alvim, H. G. O.; Pinheiro, D. L. J.; Carvalho-Silva, V. H.; Fioramonte, M.; Gozzo, F. C.; da Silva, W. A.; Amarante, G. W.; Neto, B. A. D. J. Org. Chem. 2018, 83, 12143-12153, DOI: https://doi.org/10.1021/acs.joc.8b02101. DOI: https://doi.org/10.1021/acs.joc.8b02101

Yu, S.; Wu, J.; Lan, H.; Gao, L.; Qian, H.; Fan, K.; Yin, Z. Org. Lett. 2020, 22, 102-105, DOI: https://doi.org/10.1021/acs.orglett.9b04015. DOI: https://doi.org/10.1021/acs.orglett.9b04015

Krauskopf, F.; Truong, K. N.; Rissanen, K.; Bolm, C. Org. Lett. 2021, 23, 2699-2703, DOI: https://doi.org/10.1021/acs.orglett.1c00596. DOI: https://doi.org/10.1021/acs.orglett.1c00596

Malek, R.; Simakov, A.; Davis, A.; Maj, M.; Bernard, P. J.; Wnorowski, A.; Martin, H.; Marco-Contelles, J.; Chabchoub, F.; Dallemagne, P.; Rochais, C.; Jozwiak, K.; Ismaili, L. Molecules 2022, 28, 71-86, DOI: https://doi.org/10.3390/molecules28010071. DOI: https://doi.org/10.3390/molecules28010071

Ding, Z.; Wu, Y.; Liu, L.; Qi, B.; Peng, Z. Org. Lett. 2023, 25, 5515-5519, DOI: https://doi.org/10.1021/acs.orglett.3c01986. DOI: https://doi.org/10.1021/acs.orglett.3c01986

Cooney, J. V. J Heterocyclic Chem 1983, 20, 823–837. DOI: https://doi.org/10.1002/jhet.5570200401

Kielland, N.; Lavilla, R. Recent Developments in Reissert-Type Multicomponent Reactions. In Synthesis of Heterocycles via Multicomponent Reactions II, Orru, R.V.A., Ruijter, E., Eds.; Topics in Heterocyclic Chemistry; Springer: Berlin, 2010; pp. 127-168. DOI: https://doi.org/10.1007/7081_2010_42

Hanzawa, Y.; Saito, A.; Sudo, K.; Iimura, K.; Hayashi, M. Heterocycles 2012, 86, 267-280, DOI: https://doi.org/10.3987/com-12-s(n)7. DOI: https://doi.org/10.3987/COM-12-S(N)7

Saito, A.; Sakurai, H.; Sudo, K.; Murai, K.; Hanzawa, Y. Eur. J. Org. Chem. 2013, 7295-7299, DOI: https://doi.org/10.1002/ejoc.201301264. DOI: https://doi.org/10.1002/ejoc.201301264

Therkelsen, M.; Rasmussen, M. T.; Lindhardt, A. T. Chem. Commun. 2015, 51, 9651-9654, DOI: https://doi.org/10.1039/c5cc02807h. DOI: https://doi.org/10.1039/C5CC02807H

Zurro, M.; Asmus, S.; Bamberger, J.; Beckendorf, S.; García Mancheno, O. Chemistry 2016, 22, 3785-3793, DOI: https://doi.org/10.1002/chem.201504094. DOI: https://doi.org/10.1002/chem.201504094

Keuper, A. C.; Fengler, K.; Ostler, F.; Danelzik, T.; Piekarski, D. G.; Garcia Mancheno, O. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304781, DOI: https://doi.org/10.1002/anie.202304781. DOI: https://doi.org/10.1002/anie.202304781

Cai, Y.; Gu, Q.; You, S. L. Org. Biomol. Chem. 2018, 16, 6146-6154, DOI: https://doi.org/10.1039/c8ob01863d. DOI: https://doi.org/10.1039/C8OB01863D

Shetty, M.; Huang, H.; Kang, J. Y. Org. Lett. 2018, 20, 700-703, DOI: https://doi.org/10.1021/acs.orglett.7b03829. DOI: https://doi.org/10.1021/acs.orglett.7b03829

Gómez-Martínez, M.; Del Carmen Pérez-Aguilar, M.; Piekarski, D. G.; Daniliuc, C. G.; García Mancheno, O. Angew. Chem. Int. Ed. Engl. 2021, 60, 5102-5107, DOI: https://doi.org/10.1002/anie.202013380. DOI: https://doi.org/10.1002/anie.202013380

Laszlo, K. B., Czako. Strategic Applications of Organic Named Reactions in Organic Synthesis, 1st Edition ed.; Academic Press: 2005; p. 864.

Shi, Y.; Wang, Q.; Gao, S. Org. Chem. Front. 2018, 5, 1049-1066, DOI: https://doi.org/10.1039/c7qo01079f. DOI: https://doi.org/10.1039/C7QO01079F

Xiao‐Hua, C.; Hui, G.; Bing, X. Eur J Chem 2012, 3, 258‐266, DOI: https://doi.org/10.5155/eurjchem.3.2.258‐266.536. DOI: https://doi.org/10.5155/eurjchem.3.2.258-266.536

Beyeh, N. K.; Valkonen, A.; Rissanen, K. Org. Lett. 2010, 12, 1392-1395, DOI: https://doi.org/10.1021/ol100407f. DOI: https://doi.org/10.1021/ol100407f

Farruggia, G.; Iotti, S.; Lombardo, M.; Marraccini, C.; Petruzziello, D.; Prodi, L.; Sgarzi, M.; Trombini, C.; Zaccheroni, N. J. Org. Chem. 2010, 75, 6275-6278, DOI: https://doi.org/10.1021/jo101173t. DOI: https://doi.org/10.1021/jo101173t

Mani, G.; Guchhait, T.; Kumar, R.; Kumar, S. Org. Lett. 2010, 12, 3910-3913, DOI: https://doi.org/10.1021/ol101598e. DOI: https://doi.org/10.1021/ol101598e

Jesin, I.; Nandi, G. C. Eur. J. Org. Chem. 2019, 2019, 2704-2720, DOI: https://doi.org/10.1002/ejoc.201900001. DOI: https://doi.org/10.1002/ejoc.201900001

Volkova, Y.; Baranin, S.; Zavarzin, I. Adv. Synth. Catal. 2020, 363, 40-61, DOI: https://doi.org/10.1002/adsc.202000866. DOI: https://doi.org/10.1002/adsc.202000866

Wu, A.; Pang, T.; Yang, Q.; Gao, M.; Wang, M. Synlett 2011, 2011, 3046-3052, DOI: https://doi.org/10.1055/s-0031-1289904. DOI: https://doi.org/10.1055/s-0031-1289904

Dhanasekaran, S.; Kayet, A.; Suneja, A.; Bisai, V.; Singh, V. K. Org. Lett. 2015, 17, 2780-2783, DOI: https://doi.org/10.1021/acs.orglett.5b01197. DOI: https://doi.org/10.1021/acs.orglett.5b01197

Min, L.; Pan, B.; Gu, Y. Org. Lett. 2016, 18, 364-367, DOI: https://doi.org/10.1021/acs.orglett.5b03287. DOI: https://doi.org/10.1021/acs.orglett.5b03287

Appun, J.; Stolz, F.; Naumov, S.; Abel, B.; Schneider, C. J. Org. Chem. 2018, 83, 1737-1744, DOI: https://doi.org/10.1021/acs.joc.7b02466. DOI: https://doi.org/10.1021/acs.joc.7b02466

Abe, T.; Shimizu, H.; Takada, S.; Tanaka, T.; Yoshikawa, M.; Yamada, K. Org. Lett. 2018, 20, 1589-1592, DOI: https://doi.org/10.1021/acs.orglett.8b00332. DOI: https://doi.org/10.1021/acs.orglett.8b00332

Li, D.; Tan, Y.; Peng, L.; Li, S.; Zhang, N.; Liu, Y.; Yan, H. Org. Lett. 2018, 20, 4959-4963, DOI: https://doi.org/10.1021/acs.orglett.8b02087. DOI: https://doi.org/10.1021/acs.orglett.8b02087

Wood, M. D.; Klosowski, D. W.; Martin, S. F. Org. Lett. 2020, 22, 786-790, DOI: https://doi.org/10.1021/acs.orglett.9b04093. DOI: https://doi.org/10.1021/acs.orglett.9b04093

Borges, A. A.; de Souza, M. P.; da Fonseca, A. C. C.; Wermelinger, G. F.; Ribeiro, R. C. B.; Amaral, A. A. P.; de Carvalho, C. J. C.; Abreu, L. S.; de Queiroz, L. N.; de Almeida, E. C. P.; Rabelo, V. W.; Abreu, P. A.; Pontes, B.; Ferreira, V. F.; da Silva, F. C.; Forezi, L.; Robbs, B. K. Molecules 2022, 28, 309-335, DOI: https://doi.org/10.3390/molecules28010309. DOI: https://doi.org/10.3390/molecules28010309

Priebbenow, D. L.; Bolm, C. Chem. Soc. Rev. 2013, 42, 7870-7880, DOI: https://doi.org/10.1039/c3cs60154d. DOI: https://doi.org/10.1039/c3cs60154d

Carmack, M. J. Heterocycl. Chem. 1989, 26, 1319-1323, DOI: https://doi.org/10.1002/jhet.5570260518. DOI: https://doi.org/10.1002/jhet.5570260518

Androsov, D. A.; Solovyev, A. Y.; Petrov, M. L.; Butcher, R. J.; Jasinski, J. P. Tetrahedron 2010, 66, 2474-2485, DOI: https://doi.org/10.1016/j.tet.2010.01.069. DOI: https://doi.org/10.1016/j.tet.2010.01.069

Eftekhari-Sis, B.; Khajeh, S.; Büyükgüngör, O. Synlett 2013, 24, 977-980, DOI: https://doi.org/10.1055/s-0032-1316897. DOI: https://doi.org/10.1055/s-0032-1316897

Vujjini, S. K.; Datla, V. R. K. R.; Badarla, K. R.; Vetukuri, V. N. K. V. P. R.; Bandichhor, R.; Kagga, M.; Cherukupally, P. Tetrahedron Lett. 2014, 55, 3885-3887, DOI: https://doi.org/10.1016/j.tetlet.2014.03.106. DOI: https://doi.org/10.1016/j.tetlet.2014.03.106

Milen, M.; Slégel, P.; Keglevich, P.; Keglevich, G.; Simig, G.; Volk, B. Tetrahedron Lett. 2015, 56, 5697-5700, DOI: https://doi.org/10.1016/j.tetlet.2015.09.007. DOI: https://doi.org/10.1016/j.tetlet.2015.09.007

Poor, M. A.; Darehkordi, A.; Anary‐Abbasinejad, M.; Sodkouieh, S. M. J. Heterocycl. Chem. 2017, 54, 2781-2787, DOI: https://doi.org/10.1002/jhet.2881. DOI: https://doi.org/10.1002/jhet.2881

Papa, M.; Chiarotto, I.; Feroci, M. ChemistrySelect 2017, 2, 3207-3210, DOI: https://doi.org/10.1002/slct.201700507. DOI: https://doi.org/10.1002/slct.201700507

Radfar, I.; Abbasi, S.; Miraki, M. K.; Yazdani, E.; Karimi, M.; Heydari, A. ChemistrySelect 2018, 3, 3265-3267, DOI: https://doi.org/10.1002/slct.201702906. DOI: https://doi.org/10.1002/slct.201702906

He, L.; Zhao, H.; Theato, P. Angew. Chem. Int. Ed. Engl. 2018, 57, 13012-13014, DOI: https://doi.org/10.1002/anie.201807005. DOI: https://doi.org/10.1002/anie.201807005

Kale, A. D.; Tayade, Y. A.; Mahale, S. D.; Patil, R. D.; Dalal, D. S. Tetrahedron 2019, 75, 130575-130587, DOI: https://doi.org/10.1016/j.tet.2019.130575. DOI: https://doi.org/10.1016/j.tet.2019.130575

Huang, H.; Qu, Z.; Ji, X.; Deng, G.-J. Org. Chem. Front. 2019, 6, 1146-1150, DOI: https://doi.org/10.1039/c8qo01365a. DOI: https://doi.org/10.1039/C8QO01365A

Pedrood, K.; Azizian, H.; Montazer, M. N.; Moazzam, A.; Asadi, M.; Montazeri, H.; Biglar, M.; Zamani, M.; Larijani, B.; Zomorodian, K.; Mohammadi-Khanaposhtani, M.; Irajie, C.; Amanlou, M.; Iraji, A.; Mahdavi, M. Sci. Rep. 2022, 12, 13827-13844, DOI: https://doi.org/10.1038/s41598-022-17993-4. DOI: https://doi.org/10.1038/s41598-022-17993-4

Bucherer, H. T.; Lieb, V. A. J. Prakt. Chem. 1934, 141, 5-43, DOI: https://doi.org/10.1002/prac.19341410102. DOI: https://doi.org/10.1002/prac.19341410102

Li, J. J. Bucherer-Bergs reaction. In Name Reactions; 2009; pp. 76-77. DOI: https://doi.org/10.1007/978-3-642-01053-8_38

Jarkas, N.; Voll, R. J.; Williams, L.; Camp, V. M.; Goodman, M. M. J. Med. Chem. 2010, 53, 6603-6607, DOI: https://doi.org/10.1021/jm100841m. DOI: https://doi.org/10.1021/jm100841m

Krysiak, J.; Midura, W. H.; Wieczorek, W.; Sieroń, L.; Mikołajczyk, M. Tetrahedron: Asymmetry 2010, 21, 1486-1493, DOI: https://doi.org/10.1016/j.tetasy.2010.04.051. DOI: https://doi.org/10.1016/j.tetasy.2010.04.051

Handzlik, J.; Bojarski, A. J.; Satala, G.; Kubacka, M.; Sadek, B.; Ashoor, A.; Siwek, A.; Wiecek, M.; Kucwaj, K.; Filipek, B.; Kiec-Kononowicz, K. Eur. J. Med. Chem. 2014, 78, 324-339, DOI: https://doi.org/10.1016/j.ejmech.2014.01.065. DOI: https://doi.org/10.1016/j.ejmech.2014.01.065

Matys, A.; Podlewska, S.; Witek, K.; Witek, J.; Bojarski, A. J.; Schabikowski, J.; Otrebska-Machaj, E.; Latacz, G.; Szymanska, E.; Kiec-Kononowicz, K.; Molnar, J.; Amaral, L.; Handzlik, J. Eur. J. Med. Chem. 2015, 101, 313-325, DOI: https://doi.org/10.1016/j.ejmech.2015.06.013. DOI: https://doi.org/10.1016/j.ejmech.2015.06.013

Kappe, C.; Monteiro, J.; Pieber, B.; Corrêa, A. Synlett 2015, 27, 83-87, DOI: https://doi.org/10.1055/s-0035-1560317. DOI: https://doi.org/10.1055/s-0035-1560317

Hirata, T.; Ueda, A.; Oba, M.; Doi, M.; Demizu, Y.; Kurihara, M.; Nagano, M.; Suemune, H.; Tanaka, M. Tetrahedron 2015, 71, 2409-2420, DOI: https://doi.org/10.1016/j.tet.2015.02.075. DOI: https://doi.org/10.1016/j.tet.2015.02.075

Tomohara, K.; Ito, T.; Hasegawa, N.; Kato, A.; Adachi, I. Tetrahedron Lett. 2016, 57, 924-927, DOI: https://doi.org/10.1016/j.tetlet.2016.01.054. DOI: https://doi.org/10.1016/j.tetlet.2016.01.054

Bisello, A.; Cardena, R.; Rossi, S.; Crisma, M.; Formaggio, F.; Santi, S. Organometallics 2017, 36, 2190-2197, DOI: https://doi.org/10.1021/acs.organomet.7b00248. DOI: https://doi.org/10.1021/acs.organomet.7b00248

Caturelli, J.; Martini, M. F.; Fabian, L.; Moltrasio, G. Y.; Moglioni, A. G. J. Mol. Struct. 2018, 1171, 495-502, DOI: https://doi.org/10.1016/j.molstruc.2018.06.007. DOI: https://doi.org/10.1016/j.molstruc.2018.06.007

Bolsakova, J.; Jirgensons, A. Chem. Heterocycl. Compd. 2018, 53, 1167-1177, DOI: https://doi.org/10.1007/s10593-018-2189-y. DOI: https://doi.org/10.1007/s10593-018-2189-y

Bishop, R. 6.07 Ritter-Type Reactions. In Comprehensive Organic Synthesis II; 2014; pp. 239-295. DOI: https://doi.org/10.1016/B978-0-08-097742-3.00610-8

Niedermann, K.; Fruh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.; Togni, A. Angew. Chem. Int. Ed. Engl. 2011, 50, 1059-1063, DOI: https://doi.org/10.1002/anie.201006021. DOI: https://doi.org/10.1002/anie.201006021

Chandra, A.; Johnston, J. N. Angew. Chem. Int. Ed. Engl. 2011, 50, 7641-7644, DOI: https://doi.org/10.1002/anie.201100957. DOI: https://doi.org/10.1002/anie.201100957

Preciado, S.; Vicente-García, E.; Llabrés, S.; Luque, F. J.; Lavilla, R. Angew. Chem. Int. Ed. Engl. 2012, 51, 6874-6877, DOI: https://doi.org/10.1002/anie.201202927. DOI: https://doi.org/10.1002/anie.201202927

Reddy, B. V. S.; Reddy, B. P.; Sivaramakrishna Reddy, P.; Reddy, Y. J.; Yadav, J. S. Tetrahedron Lett. 2013, 54, 4960-4962, DOI: https://doi.org/10.1016/j.tetlet.2013.07.026. DOI: https://doi.org/10.1016/j.tetlet.2013.07.026

Yadav, J. S.; Reddy, Y. J.; Reddy, P. A.; Reddy, B. V. Org. Lett. 2013, 15, 546-549, DOI: https://doi.org/10.1021/ol303364j. DOI: https://doi.org/10.1021/ol303364j

Indukuri, K.; Unnava, R.; Deka, M. J.; Saikia, A. K. J. Org. Chem. 2013, 78, 10629-10641, DOI: https://doi.org/10.1021/jo401450j. DOI: https://doi.org/10.1021/jo401450j

Ben Jamaa, A.; Grellepois, F. J. Org. Chem. 2017, 82, 10360-10375, DOI: https://doi.org/10.1021/acs.joc.7b01814. DOI: https://doi.org/10.1021/acs.joc.7b01814

Feng, C.; Li, Y.; Sheng, X.; Pan, L.; Liu, Q. Org. Lett. 2018, 20, 6449-6452, DOI: https://doi.org/10.1021/acs.orglett.8b02762. DOI: https://doi.org/10.1021/acs.orglett.8b02762

Skvorcova, M.; Lukasevics, L. T.; Jirgensons, A. J. Org. Chem. 2019, 84, 3780-3792, DOI: https://doi.org/10.1021/acs.joc.8b02576. DOI: https://doi.org/10.1021/acs.joc.8b02576

Ruggeri, M.; Dombrowski, A. W.; Djuric, S. W.; Baxendale, I. R. J. Org. Chem. 2020, 85, 7276-7286, DOI: https://doi.org/10.1021/acs.joc.0c00656. DOI: https://doi.org/10.1021/acs.joc.0c00656

Cao, J.; Lv, D.; Yu, F.; Chiou, M. F.; Li, Y.; Bao, H. Org. Lett. 2021, 23, 3184-3189, DOI: https://doi.org/10.1021/acs.orglett.1c00898. DOI: https://doi.org/10.1021/acs.orglett.1c00898

Hong, Y. C.; Ye, J. L.; Huang, P. Q. J. Org. Chem. 2022, 87, 9044-9055, DOI: https://doi.org/10.1021/acs.joc.2c00718. DOI: https://doi.org/10.1021/acs.joc.2c00718

Zhdankin, V. V.; Zefirov, N. S.; Matveeva, E. D. Arkivoc 2008, i, 1-17, DOI: https://doi.org/10.3998/ark.5550190.0009.101. DOI: https://doi.org/10.3998/ark.5550190.0009.101

Keglevich, G.; Balint, E. Molecules 2012, 17, 12821-12835, DOI: https://doi.org/10.3390/molecules171112821. DOI: https://doi.org/10.3390/molecules171112821

Viveros-Ceballos, J. L.; Cativiela, C.; Ordóñez, M. Tetrahedron: Asymmetry 2011, 22, 1479-1484, DOI: https://doi.org/10.1016/j.tetasy.2011.08.003. DOI: https://doi.org/10.1016/j.tetasy.2011.08.003

Hajos, G.; Vassiliou, S.; Grabowiecka, A.; Kosikowska, P.; Berlicki, Ł. Arkivoc 2011, iv, 33-43, DOI: https://doi.org/10.3998/ark.5550190.0013.404. DOI: https://doi.org/10.3998/ark.5550190.0013.404

Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358-4361, DOI: https://doi.org/10.1021/ol401858k. DOI: https://doi.org/10.1021/ol401858k

Buksnaitiene, R.; Urbanaite, A.; Cikotiene, I. J. Org. Chem. 2014, 79, 6532-6553, DOI: https://doi.org/10.1021/jo501011u. DOI: https://doi.org/10.1021/jo501011u

Long, Z.; Liu, M.; Jiang, R.; Zeng, G.; Wan, Q.; Huang, H.; Deng, F.; Wan, Y.; Zhang, X.; Wei, Y. Ultrason. Sonochem. 2017, 35, 319-325, DOI: https://doi.org/10.1016/j.ultsonch.2016.10.008. DOI: https://doi.org/10.1016/j.ultsonch.2016.10.008

Gabriela Vogt, A.; Perin, G.; Luchese, C.; da Silva, P. C.; Antunes Wilhelm, E.; Santos Silva, M. Eur. J. Org. Chem. 2018, 627-639, DOI: https://doi.org/10.1002/ejoc.201701565. DOI: https://doi.org/10.1002/ejoc.201701565

Tiwari, S. V.; Sharif, N. S.; Gajare, R. I.; Vazquez, J. A. S.; Sangshetti, J. N.; Damale, M. D.; Nikalje, A. P. G. Molecules 2018, 23, 1981-2001, DOI: https://doi.org/10.3390/molecules23081981. DOI: https://doi.org/10.3390/molecules23081981

Tajti, A.; Szatmari, E.; Perdih, F.; Keglevich, G.; Balint, E. Molecules 2019, 24, 1640-1653, DOI: https://doi.org/10.3390/molecules24081640. DOI: https://doi.org/10.3390/molecules24081640

Hernández-Moreno, J. T.; Romero-Estudillo, I.; Cativiela, C.; Ordóñez, M. Synthesis 2019, 52, 769-774, DOI: https://doi.org/10.1055/s-0039-1690755. DOI: https://doi.org/10.1055/s-0039-1690755

Bazine, I.; Cheraiet, Z.; Bensegueni, R.; Bensouici, C.; Boukhari, A. J. Heterocycl. Chem. 2020, 57, 2139-2149, DOI: https://doi.org/10.1002/jhet.3933. DOI: https://doi.org/10.1002/jhet.3933

Aissa, R.; Guezane-Lakoud, S.; Gali, L.; Toffano, M.; Ignaczak, A.; Adamiak, M.; Merabet-Khelassi, M.; Guillot, R.; Aribi-Zouioueche, L. J. Mol. Struct. 2022, 1247, 131336-131351, DOI: https://doi.org/10.1016/j.molstruc.2021.131336. DOI: https://doi.org/10.1016/j.molstruc.2021.131336

Martínez-Campos, Z.; Elizondo-Zertuche, M.; Hernández-Núnez, E.; Hernández-Fernández, E.; Robledo-Leal, E.; López-Cortina, S. T. Molecules 2023, 28, 3995-4014, DOI: https://doi.org/10.3390/molecules28103995. DOI: https://doi.org/10.3390/molecules28103995

Sabnis, R. W. Color. Technol. 2016, 132, 49-82, DOI: https://doi.org/10.1111/cote.12182. DOI: https://doi.org/10.1111/cote.12182

Huang, Y.; Dӧmling, A. Mol. Divers. 2011, 15, 3-33, DOI: https://doi.org/10.1007/s11030-010-9229-6. DOI: https://doi.org/10.1007/s11030-010-9229-6

Özbek, H.; Lentz, D.; Reissig, H. U. Eur. J. Org. Chem. 2010, 6319-6322, DOI: https://doi.org/10.1002/ejoc.201001066. DOI: https://doi.org/10.1002/ejoc.201001066

Dong, Y.; Bolduc, A.; McGregor, N.; Skene, W. G. Org. Lett. 2011, 13, 1844-1847, DOI: https://doi.org/10.1021/ol200353k. DOI: https://doi.org/10.1021/ol200353k

Hesse, S.; Revelant, G.; Dunand, S.; Kirsch, G. Synthesis 2011, 2011, 2935-2940, DOI: https://doi.org/10.1055/s-0030-1261032. DOI: https://doi.org/10.1055/s-0030-1261032

Zheng, Z.-J.; Liu, L.-X.; Gao, G.; Dong, H.; Jiang, J.-X.; Lai, G.-Q.; Xu, L.-W. RSC Advances 2012, 2, 2895–2901, DOI: https://doi.org/10.1039/c2ra00029f. DOI: https://doi.org/10.1039/c2ra00029f

Nakhi, A.; Adepu, R.; Rambabu, D.; Kishore, R.; Vanaja, G. R.; Kalle, A. M.; Pal, M. Bioorg. Med. Chem. Lett. 2012, 22, 4418-4427, DOI: https://doi.org/10.1016/j.bmcl.2012.04.109. DOI: https://doi.org/10.1016/j.bmcl.2012.04.109

Adepu, R.; Rambabu, D.; Prasad, B.; Meda, C. L.; Kandale, A.; Krishna, G. R.; Reddy, C. M.; Chennuru, L. N.; Parsa, K. V.; Pal, M. Org. Biomol. Chem. 2012, 10, 5554-5569, DOI: https://doi.org/10.1039/c2ob25420d. DOI: https://doi.org/10.1039/c2ob25420d

Madácsi, R.; Traj, P.; Hackler, L.; Nagy, L. I.; Kari, B.; Puskás, L. G.; Kanizsai, I. J. Heterocycl. Chem. 2019, 57, 635-652, DOI: https://doi.org/10.1002/jhet.3800. DOI: https://doi.org/10.1002/jhet.3800

Nguyen, T. B.; Mac, D. H.; Retailleau, P. J. Org. Chem. 2021, 86, 9418-9427, DOI: https://doi.org/10.1021/acs.joc.1c00740. DOI: https://doi.org/10.1021/acs.joc.1c00740

Yao, C.-H.; Shen, Z.-Q.; Rajan, Y. C.; Huang, Y.-W.; Lin, C.-Y.; Song, J.-S.; Shiao, H.-Y.; Ke, Y.-Y.; Fan, Y.-S.; Tsai, C.-H.; Yeh, T.-K.; Tsai, T.-F.; Lee, J.-C. Eur. J. Med. Chem. 2023, 258, 115583-115596, DOI: https://doi.org/10.1016/j.ejmech.2023.115583. DOI: https://doi.org/10.1016/j.ejmech.2023.115583

Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245-11290, DOI: https://doi.org/10.1021/acs.chemrev.9b00214. DOI: https://doi.org/10.1021/acs.chemrev.9b00214

Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583-586, DOI: https://doi.org/10.1016/s0040-4039(00)61625-8. DOI: https://doi.org/10.1016/S0040-4039(00)61625-8

Moosophon, P.; Baird, M. C.; Kanokmedhakul, S.; Pyne, S. G. Eur. J. Org. Chem. 2010, 2010, 3337-3344, DOI: https://doi.org/10.1002/ejoc.201000157. DOI: https://doi.org/10.1002/ejoc.201000157

Churches, Q. I.; White, J. M.; Hutton, C. A. Org. Lett. 2011, 13, 2900-2903, DOI: https://doi.org/10.1021/ol200917s. DOI: https://doi.org/10.1021/ol200917s

Mundal, D. A.; Lutz, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2012, 134, 5782-5785, DOI: https://doi.org/10.1021/ja301489n. DOI: https://doi.org/10.1021/ja301489n

Ghosal, P.; Shaw, A. K. J. Org. Chem. 2012, 77, 7627-7632, DOI: https://doi.org/10.1021/jo300804d. DOI: https://doi.org/10.1021/jo300804d

Liew, S. K.; He, Z.; St Denis, J. D.; Yudin, A. K. J. Org. Chem. 2013, 78, 11637-11645, DOI: https://doi.org/10.1021/jo401489q. DOI: https://doi.org/10.1021/jo401489q

Shi, X.; Kiesman, W. F.; Levina, A.; Xin, Z. J. Org. Chem. 2013, 78, 9415-9423, DOI: https://doi.org/10.1021/jo4016425. DOI: https://doi.org/10.1021/jo4016425

Matthies, S.; Stallforth, P.; Seeberger, P. H. J. Am. Chem. Soc. 2015, 137, 2848-2851, DOI: https://doi.org/10.1021/jacs.5b00455. DOI: https://doi.org/10.1021/jacs.5b00455

Flagstad, T.; Min, G.; Bonnet, K.; Morgentin, R.; Roche, D.; Clausen, M. H.; Nielsen, T. E. Org. Biomol. Chem. 2016, 14, 4943-4946, DOI: https://doi.org/10.1039/c6ob00961a. DOI: https://doi.org/10.1039/C6OB00961A

Ricardo, M. G.; Llanes, D.; Wessjohann, L. A.; Rivera, D. G. Angew. Chem. Int. Ed. Engl. 2019, 58, 2700-2704, DOI: https://doi.org/10.1002/anie.201812620. DOI: https://doi.org/10.1002/anie.201812620

Li, H.; Cui, C. X.; Zhang, G. H.; Li, X. Q.; Yang, J. J. Org. Chem. 2020, 85, 1285-1290, DOI: https://doi.org/10.1021/acs.joc.9b02651. DOI: https://doi.org/10.1021/acs.joc.9b02651

Hommelsheim, R.; Nunez Ponce, H. M.; Truong, K. N.; Rissanen, K.; Bolm, C. Org. Lett. 2021, 23, 3415-3420, DOI: https://doi.org/10.1021/acs.orglett.1c00874. DOI: https://doi.org/10.1021/acs.orglett.1c00874

Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656-670, DOI: https://doi.org/10.1070/RC1967v036n09ABEH001680. DOI: https://doi.org/10.1070/RC1967v036n09ABEH001680

Cores, A.; Clerigué, J.; Orocio-Rodríguez, E.; Menéndez, J. C. Pharmaceuticals 2022, 15, DOI: https://doi.org/10.3390/ph15081009. DOI: https://doi.org/10.3390/ph15081009

Di Pietro, O.; Vicente-García, E.; Taylor, M. C.; Berenguer, D.; Viayna, E.; Lanzoni, A.; Sola, I.; Sayago, H.; Riera, C.; Fisa, R.; Clos, M. V.; Pérez, B.; Kelly, J. M.; Lavilla, R.; Munoz-Torrero, D. Eur. J. Med. Chem. 2015, 105, 120-137, DOI: https://doi.org/10.1016/j.ejmech.2015.10.007. DOI: https://doi.org/10.1016/j.ejmech.2015.10.007

Viglianisi, C.; Biagioli, C.; Lippi, M.; Pedicini, M.; Villani, C.; Franzini, R.; Menichetti, S. Eur. J. Org. Chem. 2018, 2019, 164-167, DOI: https://doi.org/10.1002/ejoc.201801489. DOI: https://doi.org/10.1002/ejoc.201801489

Yamamoto, S.; Zhou, Z. Y.; Hiruta, G.; Takeuchi, K.; Choi, J. C.; Yasuda, T.; Kanbara, T.; Kuwabara, J. J. Org. Chem. 2021, 86, 7920-7927, DOI: https://doi.org/10.1021/acs.joc.1c00078. DOI: https://doi.org/10.1021/acs.joc.1c00078

Wang, L.; Rowe, R. G.; Jaimes, A.; Yu, C.; Nam, Y.; Pearson, D. S.; Zhang, J.; Xie, X.; Marion, W.; Heffron, G. J.; Daley, G. Q.; Sliz, P. Cell Rep. 2018, 23, 3091-3101, DOI: https://doi.org/10.1016/j.celrep.2018.04.116. DOI: https://doi.org/10.1016/j.celrep.2018.04.116

Das, P.; Chakraborty, G.; Friese, N.; Roeser, J.; Prinz, C.; Emmerling, F.; Schmidt, J.; Thomas, A. J. Am. Chem. Soc. 2024, 146, 17131-17139, DOI: https://doi.org/10.1021/jacs.4c02551. DOI: https://doi.org/10.1021/jacs.4c02551

Fujita, S.; Sakaguchi, T.; Kobayashi, T.; Tsuchikawa, H.; Katsumura, S. Org. Lett. 2013, 15, 2758-2761, DOI: https://doi.org/10.1021/ol4010917. DOI: https://doi.org/10.1021/ol4010917

Xu, Z.; Huang, H.; Chen, H.; Deng, G.-J. Org. Chem. Front. 2019, 6, 3060-3064, DOI: https://doi.org/10.1039/c9qo00592g. DOI: https://doi.org/10.1039/C9QO00592G

Flores-Reyes, J. C.; Blanco-Carapia, R. E.; López-Olvera, A.; Islas-Jácome, P.; Medina-Martínez, Y.; Rincón-Guevara, M. A.; Ibarra, I. A.; Lomas-Romero, L.; González-Zamora, E.; Islas-Jácome, A. Proceedings 2019, 41, 26, DOI: https://doi.org/10.3390/ecsoc-23-06521. DOI: https://doi.org/10.3390/ecsoc-23-06521

Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. J. Org. Chem. 2015, 80, 6959-6967, DOI: https://doi.org/10.1021/acs.joc.5b00407. DOI: https://doi.org/10.1021/acs.joc.5b00407

×

Downloads

Published

2025-01-01
x

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...