Non-Isocyanide-Based Three-Component Reactions: From Strecker to Nowadays
DOI:
https://doi.org/10.29356/jmcs.v69i1.2301Keywords:
MCRs, isocyanides, multicomponent reactions, DFT-based calculations, reaction mechanismsAbstract
Almost two centuries have passed since Strecker synthesized for the first time the α-aminoacid DL-alanine via a sequential combination of acetaldehyde with aqueous ammonia and hydrogen cyanide, coupled to a further hydrolysis of the resulting α-aminonitrile using an acid aqueous solution. Since then, a broad variety of high valued products in various fields of science and technology have been synthesized via three-component reactions (3CRs) or via one-pot methodologies involving 3CRs coupled smartly to further processes like functionalizations, condensations, cross couplings, cyclizations, ring openings, and so on. In the same way, very interesting and useful computational calculations behind understanding reaction mechanisms related to 3CRs, conformational analyses, and energy profiles have been performed. All these topics are on the scope of the present review, which covers selected and elegant based 3CRs (except for the Ugi-3CR or its variants), and other unclassified 3CR-based works from 2010 to nowadays.
Resumen. Han pasado casi dos siglos desde que Strecker sintetizó por primera vez el α-aminoácido DL-alanina mediante una combinación secuencial de acetaldehído con amoníaco acuoso y cianuro de hidrógeno, acoplada a una hidrólisis posterior del α-aminonitrilo resultante utilizando una solución acuosa ácida. Desde entonces, se ha sintetizado una amplia variedad de productos de gran valor en diversos campos de la ciencia y la tecnología mediante reacciones de tres componentes (3CR) o mediante metodologías en un mismo reactor que implican 3CR acopladas a procesos posteriores como funcionalizaciones, condensaciones, acoplamientos cruzados, ciclizaciones, aperturas de anillos, etc. Del mismo modo, se han realizado cálculos computacionales muy interesantes y útiles para comprender los mecanismos de reacción relacionados con 3CR, análisis conformacionales y perfiles energéticos. Todos estos temas están dentro del alcance del presente artículo de revisión, que considera trabajos seleccionados y elegantes basados en 3CRs (excepto Ugi-3CR o sus variantes), y otras 3CRs no clasificadas desde 2010 hasta la actualidad.
Downloads
References
Dӧmling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083-3135, DOI: https://doi.org/10.1021/cr100233r. DOI: https://doi.org/10.1021/cr100233r
Ibarra, I. A.; Islas-Jácome, A.; González-Zamora, E. Org. Biomol. Chem. 2018, 16, 1402-1418, DOI: https://doi.org/10.1039/c7ob02305g. DOI: https://doi.org/10.1039/C7OB02305G
Flores-Reyes, J. C.; Islas-Jácome, A.; González-Zamora, E. Org. Chem. Front. 2021, 8, 5460-5515, DOI: https://doi.org/10.1039/d1qo00313e. DOI: https://doi.org/10.1039/D1QO00313E
Syamala, M. Org. Prep. Proced. Int. 2009, 41, 1-68, DOI: https://doi.org/10.1080/00304940802711218. DOI: https://doi.org/10.1080/00304940802711218
Morales-Salazar, I.; Montes-Enríquez, F. P.; Garduño-Albino, C. E.; García-Sánchez, M. A.; Ibarra, I. A.; Rojas-Aguirre, Y.; García-Hernández, M. E.; Sarmiento-Silva, R. E.; Alcaraz-Estrada, S. L.; Díaz-Cervantes, E.; González-Zamora, E.; Islas-Jácome, A. RSC Med. Chem. 2023, 14, 154-165, DOI: https://doi.org/10.1039/d2md00350c. DOI: https://doi.org/10.1039/D2MD00350C
Feng, D.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z.; Zhou, H. C. Angew. Chem. Int. Ed. Engl. 2012, 51, 10307-10310, DOI: https://doi.org/10.1002/anie.201204475. DOI: https://doi.org/10.1002/anie.201204475
Lamberth, C. Bioorg Med Chem 2020, 28, 115471-115483, DOI: https://doi.org/10.1016/j.bmc.2020.115471. DOI: https://doi.org/10.1016/j.bmc.2020.115471
Basavanag, U. M. V.; Islas-Jácome, A.; Rentería-Gómez, A.; Conejo, A. S.; Kurva, M.; Jiménez-Halla, J. O. C.; Velusamy, J.; Ramos-Ortíz, G.; Gámez-Montaño, R. New J. Chem. 2017, 41, 3450-3459, DOI: https://doi.org/10.1039/c6nj04044f. DOI: https://doi.org/10.1039/C6NJ04044F
Orru, R. V. A.; de Greef, M. Synthesis-Stuttgart 2003, 1471-1499, DOI: https://doi.org/DOI 10.1055/s-2003-40507. DOI: https://doi.org/10.1055/s-2003-40507
Ayaz, M.; De Moliner, F.; Morales, G. A.; Hulme, C. Third component cyanide (Strecker and Strecker-type reactions). In Science of synthesis: multicomponent reactions, Muller, T.J.J., Ed.; Georg Thieme Verlag: 2013; Volume 1, pp. 99-122.
Win-Mason, A. L.; Jongkees, S. A.; Withers, S. G.; Tyler, P. C.; Timmer, M. S.; Stocker, B. L. J. Org. Chem. 2011, 76, 9611-9621, DOI: https://doi.org/10.1021/jo201151b. DOI: https://doi.org/10.1021/jo201151b
Pan, F.; Chen, J. M.; Zhuang, Z.; Fang, Y. Z.; Zhang, S. X.; Liao, W. W. Org. Biomol. Chem. 2012, 10, 2214-2217, DOI: https://doi.org/10.1039/c2ob07112f. DOI: https://doi.org/10.1039/c2ob07112f
Matassini, C.; Mirabella, S.; Goti, A.; Cardona, F. Eur. J. Org. Chem. 2012, 3920-3924, DOI: https://doi.org/10.1002/ejoc.201200587. DOI: https://doi.org/10.1002/ejoc.201200587
Sadhukhan, A.; Saravanan, S.; Khan, N. U.; Kureshy, R. I.; Abdi, S. H.; Bajaj, H. C. J. Org. Chem. 2012, 77, 7076-7080, DOI: https://doi.org/10.1021/jo300642z. DOI: https://doi.org/10.1021/jo300642z
Pellissier, H. Adv. Synth. Catal. 2011, 353, 659-676, DOI: https://doi.org/10.1002/adsc.201000751. DOI: https://doi.org/10.1002/adsc.201000751
Zhao, B.; Hao, X. Y.; Zhang, J. X.; Liu, S.; Hao, X. J. Org. Lett. 2013, 15, 528-530, DOI: https://doi.org/10.1021/ol303344d. DOI: https://doi.org/10.1021/ol303344d
Grygorenko, O.; Ivon, Y.; Tymtsunik, A.; Komarov, I.; Shishkin, O. Synthesis 2015, 47, 1123-1130, DOI: https://doi.org/10.1055/s-0034-1380116. DOI: https://doi.org/10.1055/s-0034-1380116
Mitachi, K.; Aleiwi, B. A.; Schneider, C. M.; Siricilla, S.; Kurosu, M. J. Am. Chem. Soc. 2016, 138, 12975-12980, DOI: https://doi.org/10.1021/jacs.6b07395. DOI: https://doi.org/10.1021/jacs.6b07395
Indalkar, K. S.; Khatri, C. K.; Chaturbhuj, G. U. Tetrahedron Lett. 2017, 58, 2144-2148, DOI: https://doi.org/10.1016/j.tetlet.2017.04.058. DOI: https://doi.org/10.1016/j.tetlet.2017.04.058
Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010-6022, DOI: https://doi.org/10.1039/c2cs35157a. DOI: https://doi.org/10.1039/c2cs35157a
Li, X. T.; Zou, J.; Wang, T. H.; Ma, H. C.; Chen, G. J.; Dong, Y. B. J. Am. Chem. Soc. 2020, 142, 6521-6526, DOI: https://doi.org/10.1021/jacs.0c00969. DOI: https://doi.org/10.1021/jacs.0c00969
Ming, W.; Liu, X.; Friedrich, A.; Krebs, J.; Marder, T. B. Org. Lett. 2020, 22, 365-370, DOI: https://doi.org/10.1021/acs.orglett.9b03773. DOI: https://doi.org/10.1021/acs.orglett.9b03773
Baskan, C.; Erturk, A. G.; Aydin, B.; Siriken, B. Bioorg. Chem. 2022, 119, 105517-105525, DOI: https://doi.org/10.1016/j.bioorg.2021.105517. DOI: https://doi.org/10.1016/j.bioorg.2021.105517
Kappe, C. O. Acc. Chem. Res. 2000, 33, 879-888, DOI: https://doi.org/10.1021/ar000048h. DOI: https://doi.org/10.1021/ar000048h
Sandhu, S.; Sandhu, J. S. Arkivoc 2012, i, 66-133, DOI: https://doi.org/10.3998/ark.5550190.0013.103. DOI: https://doi.org/10.3998/ark.5550190.0013.103
Couto, I.; Tellitu, I.; Dominguez, E. J. Org. Chem. 2010, 75, 7954-7957, DOI: https://doi.org/10.1021/jo101797s. DOI: https://doi.org/10.1021/jo101797s
Nandi, G. C.; Samai, S.; Singh, M. S. J. Org. Chem. 2010, 75, 7785-7795, DOI: https://doi.org/10.1021/jo101572c. DOI: https://doi.org/10.1021/jo101572c
Shen, Z. L.; Xu, X. P.; Ji, S. J. J. Org. Chem. 2010, 75, 1162-1167, DOI: https://doi.org/10.1021/jo902394y. DOI: https://doi.org/10.1021/jo902394y
Saha, S.; Moorthy, J. N. J. Org. Chem. 2011, 76, 396-402, DOI: https://doi.org/10.1021/jo101717m. DOI: https://doi.org/10.1021/jo101717m
Boruah, R.; Gogoi, S.; Dutta, M.; Gogoi, J.; Shekarrao, K.; Goswami, J. Synthesis 2012, 44, 2614-2622, DOI: https://doi.org/10.1055/s-0032-1316564. DOI: https://doi.org/10.1055/s-0032-1316564
Breit, B.; Fuchs, D.; Nasr-Esfahani, M.; Diab, L.; Šmejkal, T. Synlett 2013, 24, 1657-1662, DOI: https://doi.org/10.1055/s-0033-1339298. DOI: https://doi.org/10.1055/s-0033-1339298
Sahoo, P. K.; Bose, A.; Mal, P. Eur. J. Org. Chem. 2015, 6994-6998, DOI: https://doi.org/10.1002/ejoc.201501039. DOI: https://doi.org/10.1002/ejoc.201501039
Stucchi, M.; Lesma, G.; Meneghetti, F.; Rainoldi, G.; Sacchetti, A.; Silvani, A. J. Org. Chem. 2016, 81, 1877-1884, DOI: https://doi.org/10.1021/acs.joc.5b02680. DOI: https://doi.org/10.1021/acs.joc.5b02680
Alvim, H. G. O.; Pinheiro, D. L. J.; Carvalho-Silva, V. H.; Fioramonte, M.; Gozzo, F. C.; da Silva, W. A.; Amarante, G. W.; Neto, B. A. D. J. Org. Chem. 2018, 83, 12143-12153, DOI: https://doi.org/10.1021/acs.joc.8b02101. DOI: https://doi.org/10.1021/acs.joc.8b02101
Yu, S.; Wu, J.; Lan, H.; Gao, L.; Qian, H.; Fan, K.; Yin, Z. Org. Lett. 2020, 22, 102-105, DOI: https://doi.org/10.1021/acs.orglett.9b04015. DOI: https://doi.org/10.1021/acs.orglett.9b04015
Krauskopf, F.; Truong, K. N.; Rissanen, K.; Bolm, C. Org. Lett. 2021, 23, 2699-2703, DOI: https://doi.org/10.1021/acs.orglett.1c00596. DOI: https://doi.org/10.1021/acs.orglett.1c00596
Malek, R.; Simakov, A.; Davis, A.; Maj, M.; Bernard, P. J.; Wnorowski, A.; Martin, H.; Marco-Contelles, J.; Chabchoub, F.; Dallemagne, P.; Rochais, C.; Jozwiak, K.; Ismaili, L. Molecules 2022, 28, 71-86, DOI: https://doi.org/10.3390/molecules28010071. DOI: https://doi.org/10.3390/molecules28010071
Ding, Z.; Wu, Y.; Liu, L.; Qi, B.; Peng, Z. Org. Lett. 2023, 25, 5515-5519, DOI: https://doi.org/10.1021/acs.orglett.3c01986. DOI: https://doi.org/10.1021/acs.orglett.3c01986
Cooney, J. V. J Heterocyclic Chem 1983, 20, 823–837. DOI: https://doi.org/10.1002/jhet.5570200401
Kielland, N.; Lavilla, R. Recent Developments in Reissert-Type Multicomponent Reactions. In Synthesis of Heterocycles via Multicomponent Reactions II, Orru, R.V.A., Ruijter, E., Eds.; Topics in Heterocyclic Chemistry; Springer: Berlin, 2010; pp. 127-168. DOI: https://doi.org/10.1007/7081_2010_42
Hanzawa, Y.; Saito, A.; Sudo, K.; Iimura, K.; Hayashi, M. Heterocycles 2012, 86, 267-280, DOI: https://doi.org/10.3987/com-12-s(n)7. DOI: https://doi.org/10.3987/COM-12-S(N)7
Saito, A.; Sakurai, H.; Sudo, K.; Murai, K.; Hanzawa, Y. Eur. J. Org. Chem. 2013, 7295-7299, DOI: https://doi.org/10.1002/ejoc.201301264. DOI: https://doi.org/10.1002/ejoc.201301264
Therkelsen, M.; Rasmussen, M. T.; Lindhardt, A. T. Chem. Commun. 2015, 51, 9651-9654, DOI: https://doi.org/10.1039/c5cc02807h. DOI: https://doi.org/10.1039/C5CC02807H
Zurro, M.; Asmus, S.; Bamberger, J.; Beckendorf, S.; García Mancheno, O. Chemistry 2016, 22, 3785-3793, DOI: https://doi.org/10.1002/chem.201504094. DOI: https://doi.org/10.1002/chem.201504094
Keuper, A. C.; Fengler, K.; Ostler, F.; Danelzik, T.; Piekarski, D. G.; Garcia Mancheno, O. Angew. Chem. Int. Ed. Engl. 2023, 62, e202304781, DOI: https://doi.org/10.1002/anie.202304781. DOI: https://doi.org/10.1002/anie.202304781
Cai, Y.; Gu, Q.; You, S. L. Org. Biomol. Chem. 2018, 16, 6146-6154, DOI: https://doi.org/10.1039/c8ob01863d. DOI: https://doi.org/10.1039/C8OB01863D
Shetty, M.; Huang, H.; Kang, J. Y. Org. Lett. 2018, 20, 700-703, DOI: https://doi.org/10.1021/acs.orglett.7b03829. DOI: https://doi.org/10.1021/acs.orglett.7b03829
Gómez-Martínez, M.; Del Carmen Pérez-Aguilar, M.; Piekarski, D. G.; Daniliuc, C. G.; García Mancheno, O. Angew. Chem. Int. Ed. Engl. 2021, 60, 5102-5107, DOI: https://doi.org/10.1002/anie.202013380. DOI: https://doi.org/10.1002/anie.202013380
Laszlo, K. B., Czako. Strategic Applications of Organic Named Reactions in Organic Synthesis, 1st Edition ed.; Academic Press: 2005; p. 864.
Shi, Y.; Wang, Q.; Gao, S. Org. Chem. Front. 2018, 5, 1049-1066, DOI: https://doi.org/10.1039/c7qo01079f. DOI: https://doi.org/10.1039/C7QO01079F
Xiao‐Hua, C.; Hui, G.; Bing, X. Eur J Chem 2012, 3, 258‐266, DOI: https://doi.org/10.5155/eurjchem.3.2.258‐266.536. DOI: https://doi.org/10.5155/eurjchem.3.2.258-266.536
Beyeh, N. K.; Valkonen, A.; Rissanen, K. Org. Lett. 2010, 12, 1392-1395, DOI: https://doi.org/10.1021/ol100407f. DOI: https://doi.org/10.1021/ol100407f
Farruggia, G.; Iotti, S.; Lombardo, M.; Marraccini, C.; Petruzziello, D.; Prodi, L.; Sgarzi, M.; Trombini, C.; Zaccheroni, N. J. Org. Chem. 2010, 75, 6275-6278, DOI: https://doi.org/10.1021/jo101173t. DOI: https://doi.org/10.1021/jo101173t
Mani, G.; Guchhait, T.; Kumar, R.; Kumar, S. Org. Lett. 2010, 12, 3910-3913, DOI: https://doi.org/10.1021/ol101598e. DOI: https://doi.org/10.1021/ol101598e
Jesin, I.; Nandi, G. C. Eur. J. Org. Chem. 2019, 2019, 2704-2720, DOI: https://doi.org/10.1002/ejoc.201900001. DOI: https://doi.org/10.1002/ejoc.201900001
Volkova, Y.; Baranin, S.; Zavarzin, I. Adv. Synth. Catal. 2020, 363, 40-61, DOI: https://doi.org/10.1002/adsc.202000866. DOI: https://doi.org/10.1002/adsc.202000866
Wu, A.; Pang, T.; Yang, Q.; Gao, M.; Wang, M. Synlett 2011, 2011, 3046-3052, DOI: https://doi.org/10.1055/s-0031-1289904. DOI: https://doi.org/10.1055/s-0031-1289904
Dhanasekaran, S.; Kayet, A.; Suneja, A.; Bisai, V.; Singh, V. K. Org. Lett. 2015, 17, 2780-2783, DOI: https://doi.org/10.1021/acs.orglett.5b01197. DOI: https://doi.org/10.1021/acs.orglett.5b01197
Min, L.; Pan, B.; Gu, Y. Org. Lett. 2016, 18, 364-367, DOI: https://doi.org/10.1021/acs.orglett.5b03287. DOI: https://doi.org/10.1021/acs.orglett.5b03287
Appun, J.; Stolz, F.; Naumov, S.; Abel, B.; Schneider, C. J. Org. Chem. 2018, 83, 1737-1744, DOI: https://doi.org/10.1021/acs.joc.7b02466. DOI: https://doi.org/10.1021/acs.joc.7b02466
Abe, T.; Shimizu, H.; Takada, S.; Tanaka, T.; Yoshikawa, M.; Yamada, K. Org. Lett. 2018, 20, 1589-1592, DOI: https://doi.org/10.1021/acs.orglett.8b00332. DOI: https://doi.org/10.1021/acs.orglett.8b00332
Li, D.; Tan, Y.; Peng, L.; Li, S.; Zhang, N.; Liu, Y.; Yan, H. Org. Lett. 2018, 20, 4959-4963, DOI: https://doi.org/10.1021/acs.orglett.8b02087. DOI: https://doi.org/10.1021/acs.orglett.8b02087
Wood, M. D.; Klosowski, D. W.; Martin, S. F. Org. Lett. 2020, 22, 786-790, DOI: https://doi.org/10.1021/acs.orglett.9b04093. DOI: https://doi.org/10.1021/acs.orglett.9b04093
Borges, A. A.; de Souza, M. P.; da Fonseca, A. C. C.; Wermelinger, G. F.; Ribeiro, R. C. B.; Amaral, A. A. P.; de Carvalho, C. J. C.; Abreu, L. S.; de Queiroz, L. N.; de Almeida, E. C. P.; Rabelo, V. W.; Abreu, P. A.; Pontes, B.; Ferreira, V. F.; da Silva, F. C.; Forezi, L.; Robbs, B. K. Molecules 2022, 28, 309-335, DOI: https://doi.org/10.3390/molecules28010309. DOI: https://doi.org/10.3390/molecules28010309
Priebbenow, D. L.; Bolm, C. Chem. Soc. Rev. 2013, 42, 7870-7880, DOI: https://doi.org/10.1039/c3cs60154d. DOI: https://doi.org/10.1039/c3cs60154d
Carmack, M. J. Heterocycl. Chem. 1989, 26, 1319-1323, DOI: https://doi.org/10.1002/jhet.5570260518. DOI: https://doi.org/10.1002/jhet.5570260518
Androsov, D. A.; Solovyev, A. Y.; Petrov, M. L.; Butcher, R. J.; Jasinski, J. P. Tetrahedron 2010, 66, 2474-2485, DOI: https://doi.org/10.1016/j.tet.2010.01.069. DOI: https://doi.org/10.1016/j.tet.2010.01.069
Eftekhari-Sis, B.; Khajeh, S.; Büyükgüngör, O. Synlett 2013, 24, 977-980, DOI: https://doi.org/10.1055/s-0032-1316897. DOI: https://doi.org/10.1055/s-0032-1316897
Vujjini, S. K.; Datla, V. R. K. R.; Badarla, K. R.; Vetukuri, V. N. K. V. P. R.; Bandichhor, R.; Kagga, M.; Cherukupally, P. Tetrahedron Lett. 2014, 55, 3885-3887, DOI: https://doi.org/10.1016/j.tetlet.2014.03.106. DOI: https://doi.org/10.1016/j.tetlet.2014.03.106
Milen, M.; Slégel, P.; Keglevich, P.; Keglevich, G.; Simig, G.; Volk, B. Tetrahedron Lett. 2015, 56, 5697-5700, DOI: https://doi.org/10.1016/j.tetlet.2015.09.007. DOI: https://doi.org/10.1016/j.tetlet.2015.09.007
Poor, M. A.; Darehkordi, A.; Anary‐Abbasinejad, M.; Sodkouieh, S. M. J. Heterocycl. Chem. 2017, 54, 2781-2787, DOI: https://doi.org/10.1002/jhet.2881. DOI: https://doi.org/10.1002/jhet.2881
Papa, M.; Chiarotto, I.; Feroci, M. ChemistrySelect 2017, 2, 3207-3210, DOI: https://doi.org/10.1002/slct.201700507. DOI: https://doi.org/10.1002/slct.201700507
Radfar, I.; Abbasi, S.; Miraki, M. K.; Yazdani, E.; Karimi, M.; Heydari, A. ChemistrySelect 2018, 3, 3265-3267, DOI: https://doi.org/10.1002/slct.201702906. DOI: https://doi.org/10.1002/slct.201702906
He, L.; Zhao, H.; Theato, P. Angew. Chem. Int. Ed. Engl. 2018, 57, 13012-13014, DOI: https://doi.org/10.1002/anie.201807005. DOI: https://doi.org/10.1002/anie.201807005
Kale, A. D.; Tayade, Y. A.; Mahale, S. D.; Patil, R. D.; Dalal, D. S. Tetrahedron 2019, 75, 130575-130587, DOI: https://doi.org/10.1016/j.tet.2019.130575. DOI: https://doi.org/10.1016/j.tet.2019.130575
Huang, H.; Qu, Z.; Ji, X.; Deng, G.-J. Org. Chem. Front. 2019, 6, 1146-1150, DOI: https://doi.org/10.1039/c8qo01365a. DOI: https://doi.org/10.1039/C8QO01365A
Pedrood, K.; Azizian, H.; Montazer, M. N.; Moazzam, A.; Asadi, M.; Montazeri, H.; Biglar, M.; Zamani, M.; Larijani, B.; Zomorodian, K.; Mohammadi-Khanaposhtani, M.; Irajie, C.; Amanlou, M.; Iraji, A.; Mahdavi, M. Sci. Rep. 2022, 12, 13827-13844, DOI: https://doi.org/10.1038/s41598-022-17993-4. DOI: https://doi.org/10.1038/s41598-022-17993-4
Bucherer, H. T.; Lieb, V. A. J. Prakt. Chem. 1934, 141, 5-43, DOI: https://doi.org/10.1002/prac.19341410102. DOI: https://doi.org/10.1002/prac.19341410102
Li, J. J. Bucherer-Bergs reaction. In Name Reactions; 2009; pp. 76-77. DOI: https://doi.org/10.1007/978-3-642-01053-8_38
Jarkas, N.; Voll, R. J.; Williams, L.; Camp, V. M.; Goodman, M. M. J. Med. Chem. 2010, 53, 6603-6607, DOI: https://doi.org/10.1021/jm100841m. DOI: https://doi.org/10.1021/jm100841m
Krysiak, J.; Midura, W. H.; Wieczorek, W.; Sieroń, L.; Mikołajczyk, M. Tetrahedron: Asymmetry 2010, 21, 1486-1493, DOI: https://doi.org/10.1016/j.tetasy.2010.04.051. DOI: https://doi.org/10.1016/j.tetasy.2010.04.051
Handzlik, J.; Bojarski, A. J.; Satala, G.; Kubacka, M.; Sadek, B.; Ashoor, A.; Siwek, A.; Wiecek, M.; Kucwaj, K.; Filipek, B.; Kiec-Kononowicz, K. Eur. J. Med. Chem. 2014, 78, 324-339, DOI: https://doi.org/10.1016/j.ejmech.2014.01.065. DOI: https://doi.org/10.1016/j.ejmech.2014.01.065
Matys, A.; Podlewska, S.; Witek, K.; Witek, J.; Bojarski, A. J.; Schabikowski, J.; Otrebska-Machaj, E.; Latacz, G.; Szymanska, E.; Kiec-Kononowicz, K.; Molnar, J.; Amaral, L.; Handzlik, J. Eur. J. Med. Chem. 2015, 101, 313-325, DOI: https://doi.org/10.1016/j.ejmech.2015.06.013. DOI: https://doi.org/10.1016/j.ejmech.2015.06.013
Kappe, C.; Monteiro, J.; Pieber, B.; Corrêa, A. Synlett 2015, 27, 83-87, DOI: https://doi.org/10.1055/s-0035-1560317. DOI: https://doi.org/10.1055/s-0035-1560317
Hirata, T.; Ueda, A.; Oba, M.; Doi, M.; Demizu, Y.; Kurihara, M.; Nagano, M.; Suemune, H.; Tanaka, M. Tetrahedron 2015, 71, 2409-2420, DOI: https://doi.org/10.1016/j.tet.2015.02.075. DOI: https://doi.org/10.1016/j.tet.2015.02.075
Tomohara, K.; Ito, T.; Hasegawa, N.; Kato, A.; Adachi, I. Tetrahedron Lett. 2016, 57, 924-927, DOI: https://doi.org/10.1016/j.tetlet.2016.01.054. DOI: https://doi.org/10.1016/j.tetlet.2016.01.054
Bisello, A.; Cardena, R.; Rossi, S.; Crisma, M.; Formaggio, F.; Santi, S. Organometallics 2017, 36, 2190-2197, DOI: https://doi.org/10.1021/acs.organomet.7b00248. DOI: https://doi.org/10.1021/acs.organomet.7b00248
Caturelli, J.; Martini, M. F.; Fabian, L.; Moltrasio, G. Y.; Moglioni, A. G. J. Mol. Struct. 2018, 1171, 495-502, DOI: https://doi.org/10.1016/j.molstruc.2018.06.007. DOI: https://doi.org/10.1016/j.molstruc.2018.06.007
Bolsakova, J.; Jirgensons, A. Chem. Heterocycl. Compd. 2018, 53, 1167-1177, DOI: https://doi.org/10.1007/s10593-018-2189-y. DOI: https://doi.org/10.1007/s10593-018-2189-y
Bishop, R. 6.07 Ritter-Type Reactions. In Comprehensive Organic Synthesis II; 2014; pp. 239-295. DOI: https://doi.org/10.1016/B978-0-08-097742-3.00610-8
Niedermann, K.; Fruh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.; Togni, A. Angew. Chem. Int. Ed. Engl. 2011, 50, 1059-1063, DOI: https://doi.org/10.1002/anie.201006021. DOI: https://doi.org/10.1002/anie.201006021
Chandra, A.; Johnston, J. N. Angew. Chem. Int. Ed. Engl. 2011, 50, 7641-7644, DOI: https://doi.org/10.1002/anie.201100957. DOI: https://doi.org/10.1002/anie.201100957
Preciado, S.; Vicente-García, E.; Llabrés, S.; Luque, F. J.; Lavilla, R. Angew. Chem. Int. Ed. Engl. 2012, 51, 6874-6877, DOI: https://doi.org/10.1002/anie.201202927. DOI: https://doi.org/10.1002/anie.201202927
Reddy, B. V. S.; Reddy, B. P.; Sivaramakrishna Reddy, P.; Reddy, Y. J.; Yadav, J. S. Tetrahedron Lett. 2013, 54, 4960-4962, DOI: https://doi.org/10.1016/j.tetlet.2013.07.026. DOI: https://doi.org/10.1016/j.tetlet.2013.07.026
Yadav, J. S.; Reddy, Y. J.; Reddy, P. A.; Reddy, B. V. Org. Lett. 2013, 15, 546-549, DOI: https://doi.org/10.1021/ol303364j. DOI: https://doi.org/10.1021/ol303364j
Indukuri, K.; Unnava, R.; Deka, M. J.; Saikia, A. K. J. Org. Chem. 2013, 78, 10629-10641, DOI: https://doi.org/10.1021/jo401450j. DOI: https://doi.org/10.1021/jo401450j
Ben Jamaa, A.; Grellepois, F. J. Org. Chem. 2017, 82, 10360-10375, DOI: https://doi.org/10.1021/acs.joc.7b01814. DOI: https://doi.org/10.1021/acs.joc.7b01814
Feng, C.; Li, Y.; Sheng, X.; Pan, L.; Liu, Q. Org. Lett. 2018, 20, 6449-6452, DOI: https://doi.org/10.1021/acs.orglett.8b02762. DOI: https://doi.org/10.1021/acs.orglett.8b02762
Skvorcova, M.; Lukasevics, L. T.; Jirgensons, A. J. Org. Chem. 2019, 84, 3780-3792, DOI: https://doi.org/10.1021/acs.joc.8b02576. DOI: https://doi.org/10.1021/acs.joc.8b02576
Ruggeri, M.; Dombrowski, A. W.; Djuric, S. W.; Baxendale, I. R. J. Org. Chem. 2020, 85, 7276-7286, DOI: https://doi.org/10.1021/acs.joc.0c00656. DOI: https://doi.org/10.1021/acs.joc.0c00656
Cao, J.; Lv, D.; Yu, F.; Chiou, M. F.; Li, Y.; Bao, H. Org. Lett. 2021, 23, 3184-3189, DOI: https://doi.org/10.1021/acs.orglett.1c00898. DOI: https://doi.org/10.1021/acs.orglett.1c00898
Hong, Y. C.; Ye, J. L.; Huang, P. Q. J. Org. Chem. 2022, 87, 9044-9055, DOI: https://doi.org/10.1021/acs.joc.2c00718. DOI: https://doi.org/10.1021/acs.joc.2c00718
Zhdankin, V. V.; Zefirov, N. S.; Matveeva, E. D. Arkivoc 2008, i, 1-17, DOI: https://doi.org/10.3998/ark.5550190.0009.101. DOI: https://doi.org/10.3998/ark.5550190.0009.101
Keglevich, G.; Balint, E. Molecules 2012, 17, 12821-12835, DOI: https://doi.org/10.3390/molecules171112821. DOI: https://doi.org/10.3390/molecules171112821
Viveros-Ceballos, J. L.; Cativiela, C.; Ordóñez, M. Tetrahedron: Asymmetry 2011, 22, 1479-1484, DOI: https://doi.org/10.1016/j.tetasy.2011.08.003. DOI: https://doi.org/10.1016/j.tetasy.2011.08.003
Hajos, G.; Vassiliou, S.; Grabowiecka, A.; Kosikowska, P.; Berlicki, Ł. Arkivoc 2011, iv, 33-43, DOI: https://doi.org/10.3998/ark.5550190.0013.404. DOI: https://doi.org/10.3998/ark.5550190.0013.404
Das, D.; Seidel, D. Org. Lett. 2013, 15, 4358-4361, DOI: https://doi.org/10.1021/ol401858k. DOI: https://doi.org/10.1021/ol401858k
Buksnaitiene, R.; Urbanaite, A.; Cikotiene, I. J. Org. Chem. 2014, 79, 6532-6553, DOI: https://doi.org/10.1021/jo501011u. DOI: https://doi.org/10.1021/jo501011u
Long, Z.; Liu, M.; Jiang, R.; Zeng, G.; Wan, Q.; Huang, H.; Deng, F.; Wan, Y.; Zhang, X.; Wei, Y. Ultrason. Sonochem. 2017, 35, 319-325, DOI: https://doi.org/10.1016/j.ultsonch.2016.10.008. DOI: https://doi.org/10.1016/j.ultsonch.2016.10.008
Gabriela Vogt, A.; Perin, G.; Luchese, C.; da Silva, P. C.; Antunes Wilhelm, E.; Santos Silva, M. Eur. J. Org. Chem. 2018, 627-639, DOI: https://doi.org/10.1002/ejoc.201701565. DOI: https://doi.org/10.1002/ejoc.201701565
Tiwari, S. V.; Sharif, N. S.; Gajare, R. I.; Vazquez, J. A. S.; Sangshetti, J. N.; Damale, M. D.; Nikalje, A. P. G. Molecules 2018, 23, 1981-2001, DOI: https://doi.org/10.3390/molecules23081981. DOI: https://doi.org/10.3390/molecules23081981
Tajti, A.; Szatmari, E.; Perdih, F.; Keglevich, G.; Balint, E. Molecules 2019, 24, 1640-1653, DOI: https://doi.org/10.3390/molecules24081640. DOI: https://doi.org/10.3390/molecules24081640
Hernández-Moreno, J. T.; Romero-Estudillo, I.; Cativiela, C.; Ordóñez, M. Synthesis 2019, 52, 769-774, DOI: https://doi.org/10.1055/s-0039-1690755. DOI: https://doi.org/10.1055/s-0039-1690755
Bazine, I.; Cheraiet, Z.; Bensegueni, R.; Bensouici, C.; Boukhari, A. J. Heterocycl. Chem. 2020, 57, 2139-2149, DOI: https://doi.org/10.1002/jhet.3933. DOI: https://doi.org/10.1002/jhet.3933
Aissa, R.; Guezane-Lakoud, S.; Gali, L.; Toffano, M.; Ignaczak, A.; Adamiak, M.; Merabet-Khelassi, M.; Guillot, R.; Aribi-Zouioueche, L. J. Mol. Struct. 2022, 1247, 131336-131351, DOI: https://doi.org/10.1016/j.molstruc.2021.131336. DOI: https://doi.org/10.1016/j.molstruc.2021.131336
Martínez-Campos, Z.; Elizondo-Zertuche, M.; Hernández-Núnez, E.; Hernández-Fernández, E.; Robledo-Leal, E.; López-Cortina, S. T. Molecules 2023, 28, 3995-4014, DOI: https://doi.org/10.3390/molecules28103995. DOI: https://doi.org/10.3390/molecules28103995
Sabnis, R. W. Color. Technol. 2016, 132, 49-82, DOI: https://doi.org/10.1111/cote.12182. DOI: https://doi.org/10.1111/cote.12182
Huang, Y.; Dӧmling, A. Mol. Divers. 2011, 15, 3-33, DOI: https://doi.org/10.1007/s11030-010-9229-6. DOI: https://doi.org/10.1007/s11030-010-9229-6
Özbek, H.; Lentz, D.; Reissig, H. U. Eur. J. Org. Chem. 2010, 6319-6322, DOI: https://doi.org/10.1002/ejoc.201001066. DOI: https://doi.org/10.1002/ejoc.201001066
Dong, Y.; Bolduc, A.; McGregor, N.; Skene, W. G. Org. Lett. 2011, 13, 1844-1847, DOI: https://doi.org/10.1021/ol200353k. DOI: https://doi.org/10.1021/ol200353k
Hesse, S.; Revelant, G.; Dunand, S.; Kirsch, G. Synthesis 2011, 2011, 2935-2940, DOI: https://doi.org/10.1055/s-0030-1261032. DOI: https://doi.org/10.1055/s-0030-1261032
Zheng, Z.-J.; Liu, L.-X.; Gao, G.; Dong, H.; Jiang, J.-X.; Lai, G.-Q.; Xu, L.-W. RSC Advances 2012, 2, 2895–2901, DOI: https://doi.org/10.1039/c2ra00029f. DOI: https://doi.org/10.1039/c2ra00029f
Nakhi, A.; Adepu, R.; Rambabu, D.; Kishore, R.; Vanaja, G. R.; Kalle, A. M.; Pal, M. Bioorg. Med. Chem. Lett. 2012, 22, 4418-4427, DOI: https://doi.org/10.1016/j.bmcl.2012.04.109. DOI: https://doi.org/10.1016/j.bmcl.2012.04.109
Adepu, R.; Rambabu, D.; Prasad, B.; Meda, C. L.; Kandale, A.; Krishna, G. R.; Reddy, C. M.; Chennuru, L. N.; Parsa, K. V.; Pal, M. Org. Biomol. Chem. 2012, 10, 5554-5569, DOI: https://doi.org/10.1039/c2ob25420d. DOI: https://doi.org/10.1039/c2ob25420d
Madácsi, R.; Traj, P.; Hackler, L.; Nagy, L. I.; Kari, B.; Puskás, L. G.; Kanizsai, I. J. Heterocycl. Chem. 2019, 57, 635-652, DOI: https://doi.org/10.1002/jhet.3800. DOI: https://doi.org/10.1002/jhet.3800
Nguyen, T. B.; Mac, D. H.; Retailleau, P. J. Org. Chem. 2021, 86, 9418-9427, DOI: https://doi.org/10.1021/acs.joc.1c00740. DOI: https://doi.org/10.1021/acs.joc.1c00740
Yao, C.-H.; Shen, Z.-Q.; Rajan, Y. C.; Huang, Y.-W.; Lin, C.-Y.; Song, J.-S.; Shiao, H.-Y.; Ke, Y.-Y.; Fan, Y.-S.; Tsai, C.-H.; Yeh, T.-K.; Tsai, T.-F.; Lee, J.-C. Eur. J. Med. Chem. 2023, 258, 115583-115596, DOI: https://doi.org/10.1016/j.ejmech.2023.115583. DOI: https://doi.org/10.1016/j.ejmech.2023.115583
Wu, P.; Givskov, M.; Nielsen, T. E. Chem. Rev. 2019, 119, 11245-11290, DOI: https://doi.org/10.1021/acs.chemrev.9b00214. DOI: https://doi.org/10.1021/acs.chemrev.9b00214
Petasis, N. A.; Akritopoulou, I. Tetrahedron Lett. 1993, 34, 583-586, DOI: https://doi.org/10.1016/s0040-4039(00)61625-8. DOI: https://doi.org/10.1016/S0040-4039(00)61625-8
Moosophon, P.; Baird, M. C.; Kanokmedhakul, S.; Pyne, S. G. Eur. J. Org. Chem. 2010, 2010, 3337-3344, DOI: https://doi.org/10.1002/ejoc.201000157. DOI: https://doi.org/10.1002/ejoc.201000157
Churches, Q. I.; White, J. M.; Hutton, C. A. Org. Lett. 2011, 13, 2900-2903, DOI: https://doi.org/10.1021/ol200917s. DOI: https://doi.org/10.1021/ol200917s
Mundal, D. A.; Lutz, K. E.; Thomson, R. J. J. Am. Chem. Soc. 2012, 134, 5782-5785, DOI: https://doi.org/10.1021/ja301489n. DOI: https://doi.org/10.1021/ja301489n
Ghosal, P.; Shaw, A. K. J. Org. Chem. 2012, 77, 7627-7632, DOI: https://doi.org/10.1021/jo300804d. DOI: https://doi.org/10.1021/jo300804d
Liew, S. K.; He, Z.; St Denis, J. D.; Yudin, A. K. J. Org. Chem. 2013, 78, 11637-11645, DOI: https://doi.org/10.1021/jo401489q. DOI: https://doi.org/10.1021/jo401489q
Shi, X.; Kiesman, W. F.; Levina, A.; Xin, Z. J. Org. Chem. 2013, 78, 9415-9423, DOI: https://doi.org/10.1021/jo4016425. DOI: https://doi.org/10.1021/jo4016425
Matthies, S.; Stallforth, P.; Seeberger, P. H. J. Am. Chem. Soc. 2015, 137, 2848-2851, DOI: https://doi.org/10.1021/jacs.5b00455. DOI: https://doi.org/10.1021/jacs.5b00455
Flagstad, T.; Min, G.; Bonnet, K.; Morgentin, R.; Roche, D.; Clausen, M. H.; Nielsen, T. E. Org. Biomol. Chem. 2016, 14, 4943-4946, DOI: https://doi.org/10.1039/c6ob00961a. DOI: https://doi.org/10.1039/C6OB00961A
Ricardo, M. G.; Llanes, D.; Wessjohann, L. A.; Rivera, D. G. Angew. Chem. Int. Ed. Engl. 2019, 58, 2700-2704, DOI: https://doi.org/10.1002/anie.201812620. DOI: https://doi.org/10.1002/anie.201812620
Li, H.; Cui, C. X.; Zhang, G. H.; Li, X. Q.; Yang, J. J. Org. Chem. 2020, 85, 1285-1290, DOI: https://doi.org/10.1021/acs.joc.9b02651. DOI: https://doi.org/10.1021/acs.joc.9b02651
Hommelsheim, R.; Nunez Ponce, H. M.; Truong, K. N.; Rissanen, K.; Bolm, C. Org. Lett. 2021, 23, 3415-3420, DOI: https://doi.org/10.1021/acs.orglett.1c00874. DOI: https://doi.org/10.1021/acs.orglett.1c00874
Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656-670, DOI: https://doi.org/10.1070/RC1967v036n09ABEH001680. DOI: https://doi.org/10.1070/RC1967v036n09ABEH001680
Cores, A.; Clerigué, J.; Orocio-Rodríguez, E.; Menéndez, J. C. Pharmaceuticals 2022, 15, DOI: https://doi.org/10.3390/ph15081009. DOI: https://doi.org/10.3390/ph15081009
Di Pietro, O.; Vicente-García, E.; Taylor, M. C.; Berenguer, D.; Viayna, E.; Lanzoni, A.; Sola, I.; Sayago, H.; Riera, C.; Fisa, R.; Clos, M. V.; Pérez, B.; Kelly, J. M.; Lavilla, R.; Munoz-Torrero, D. Eur. J. Med. Chem. 2015, 105, 120-137, DOI: https://doi.org/10.1016/j.ejmech.2015.10.007. DOI: https://doi.org/10.1016/j.ejmech.2015.10.007
Viglianisi, C.; Biagioli, C.; Lippi, M.; Pedicini, M.; Villani, C.; Franzini, R.; Menichetti, S. Eur. J. Org. Chem. 2018, 2019, 164-167, DOI: https://doi.org/10.1002/ejoc.201801489. DOI: https://doi.org/10.1002/ejoc.201801489
Yamamoto, S.; Zhou, Z. Y.; Hiruta, G.; Takeuchi, K.; Choi, J. C.; Yasuda, T.; Kanbara, T.; Kuwabara, J. J. Org. Chem. 2021, 86, 7920-7927, DOI: https://doi.org/10.1021/acs.joc.1c00078. DOI: https://doi.org/10.1021/acs.joc.1c00078
Wang, L.; Rowe, R. G.; Jaimes, A.; Yu, C.; Nam, Y.; Pearson, D. S.; Zhang, J.; Xie, X.; Marion, W.; Heffron, G. J.; Daley, G. Q.; Sliz, P. Cell Rep. 2018, 23, 3091-3101, DOI: https://doi.org/10.1016/j.celrep.2018.04.116. DOI: https://doi.org/10.1016/j.celrep.2018.04.116
Das, P.; Chakraborty, G.; Friese, N.; Roeser, J.; Prinz, C.; Emmerling, F.; Schmidt, J.; Thomas, A. J. Am. Chem. Soc. 2024, 146, 17131-17139, DOI: https://doi.org/10.1021/jacs.4c02551. DOI: https://doi.org/10.1021/jacs.4c02551
Fujita, S.; Sakaguchi, T.; Kobayashi, T.; Tsuchikawa, H.; Katsumura, S. Org. Lett. 2013, 15, 2758-2761, DOI: https://doi.org/10.1021/ol4010917. DOI: https://doi.org/10.1021/ol4010917
Xu, Z.; Huang, H.; Chen, H.; Deng, G.-J. Org. Chem. Front. 2019, 6, 3060-3064, DOI: https://doi.org/10.1039/c9qo00592g. DOI: https://doi.org/10.1039/C9QO00592G
Flores-Reyes, J. C.; Blanco-Carapia, R. E.; López-Olvera, A.; Islas-Jácome, P.; Medina-Martínez, Y.; Rincón-Guevara, M. A.; Ibarra, I. A.; Lomas-Romero, L.; González-Zamora, E.; Islas-Jácome, A. Proceedings 2019, 41, 26, DOI: https://doi.org/10.3390/ecsoc-23-06521. DOI: https://doi.org/10.3390/ecsoc-23-06521
Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. J. Org. Chem. 2015, 80, 6959-6967, DOI: https://doi.org/10.1021/acs.joc.5b00407. DOI: https://doi.org/10.1021/acs.joc.5b00407


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ivette Morales-Salazar, Jean-Philippe Bouillon, Eduardo González-Zamora, Alejandro Islas-Jácome

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
