pH Determination Under Unconventional Conditions of Temperature and Ionic Strength

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i2.2160

Keywords:

Chemical equilibria, apparent constant, pH determination, Van’t Hoff, Debye-Hückel

Abstract

Abstract. The pH in an aqueous solution is a relevant parameter in many fields of chemistry, and its determination is not trivial when factors such as temperature and ionic strength are considered. In multicomponent systems, this situation becomes significant. Even in simple systems, there are variations of up to 1.813 pH units in CH3COOK solutions when thermodynamic constants are used instead of apparent constants to calculate it. In this study, we propose a methodology that investigates the influence of these variables on the apparent dissociation constants of water and acetic acid, as well as their impact on the pH measurement of solutions prepared from CH3COOH and a salt of its conjugate base. Non−linear adjustments were carried out using a polynomial analogous to the Van't Hoff equation to establish a relationship between the thermodynamic constants of formation and the wide temperature range proposed. Furthermore, the influence of the ionic medium was considered when correcting the activity coefficients using the extended model of the Debye−Hückel equation. This approach enabled a detailed description of the set of apparent formation constants, which were directly applied in the formal pH calculation without approximations. These variations were represented on response surfaces and interpolated to the proposed operating conditions. The successful correlation between the theoretical results and those obtained experimentally through potentiometric measurements confirmed a harmonious relationship between both data sets. The described methodology offers a novel alternative for calculating pH in multicomponent systems, including real samples, in unconventional conditions of temperature and ionic strength.

 

Resumen. El pH en una disolución acuosa es un parámetro relevante en muchos campos de la química, y su determinación no es trivial cuando se consideran factores como la temperatura y la fuerza iónica. En sistemas multicomponente, esta situación se vuelve significativa. Incluso en sistemas simples, existen variaciones de hasta 1.813 unidades de pH en disoluciones de CH3COOK cuando se utilizan constantes termodinámicas en lugar de constantes aparentes para calcularlo. En este trabajo, se propone una metodología que indaga en la influencia de estas variables sobre las constantes de disociación aparentes del agua y del ácido acético, así como su impacto en la medición del pH de soluciones preparadas a partir de CH3COOH y una sal de su base conjugada. Se realizaron ajustes no lineales utilizando un polinomio análogo a la ecuación de Van't Hoff para establecer una relación entre las constantes termodinámicas de formación y el amplio rango de temperaturas propuesto. Además, se consideró la influencia del medio iónico al corregir los coeficientes de actividad mediante el modelo extendido de la ecuación de Debye−Hückel. Este enfoque permitió una descripción detallada del conjunto de constantes de formación aparentes, que se aplicaron directamente en el cálculo formal del pH sin aproximaciones. Estas variaciones se representaron en superficies de respuesta y se interpolaron a las condiciones de operación propuestas. La correlación exitosa entre los resultados teóricos y los obtenidos experimentalmente mediante mediciones potenciométricas confirmó una relación armoniosa entre ambos conjuntos de datos. La metodología descrita ofrece una alternativa novedosa para el cálculo del pH en sistemas multicomponentes, incluidas muestras reales, en condiciones no convencionales de temperatura y fuerza iónica.

Downloads

Download data is not yet available.

Author Biographies

Ricardo G. Martínez-Pérez, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

Emmanuel Ruiz-Villalobos, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

Fernando D. González-Arteaga, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

Elizabeth Vilchis-Barrera, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

Jorge Ruvalcaba-Juárez, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

Arturo Garcia-Mendoza, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán

Laboratorio de Química en Disolución y Electroquímica

References

Buck, R. P.; Rondinini, S.; Covington, A. K.; Baucke, F. G. K.; Brett, C. M. A.; Camöes, M. F.; Milton, M. J. T.; Mussini, T.; Naumann, R.; Pratt, K. W.; Spitzer, P.; Wilson, G. S. Pure Appl. Chem. 2002, 74, 2169–2200. DOI: https://doi.org/10.1351/pac200274112169

Long, L.-S. CrystEngComm. 2010, 12, 1354–1365. DOI: https://doi.org/10.1039/b921146b. DOI: https://doi.org/10.1039/b921146b

Mayes, W. M.; Batty, L. C.; Younger, P. L.; Jarvis, A. P.; Kõiv, M.; Vohla, C.; Mander, U. Sci. Total Environ. 2009, 407, 3944–3957. DOI: https://doi.org/10.1016/j.scitotenv.2008.06.045. DOI: https://doi.org/10.1016/j.scitotenv.2008.06.045

Pierson, T. C.; Diamond, M. S. Curr. Opin. Virol. 2012, 2, 168–175. DOI: https://doi.org/10.1016/j.coviro.2012.02.011. DOI: https://doi.org/10.1016/j.coviro.2012.02.011

Tao, W.; Wang, J.; Parak, W. J.; Farokhzad, O. C.; Shi, J. ACS Nano. 2019, 13, 4876–4882. DOI: https://doi.org/10.1021/acsnano.9b01696. DOI: https://doi.org/10.1021/acsnano.9b01696

Śmigiel, W. M.; Lefrançois, P.; Poolman, B. Top. Life Sci. 2019, 3, 445–458. DOI: https://doi.org/10.1042/etls20190017. DOI: https://doi.org/10.1042/ETLS20190017

Abdella, S.; Abid, F.; Youssef, S. H.; Kim, S.; Afinjuomo, F.; Malinga, C.; Song, Y.; Garg, S. Drug Dev. Ind. Pharm. 2023, 28, 103414. DOI: https://doi.org/10.1016/j.drudis.2022.103414. DOI: https://doi.org/10.1016/j.drudis.2022.103414

Hendi, A.; Hassan, M. U.; Elsherif, M.; Alqattan, B.; Park, S.; Yetisen, A. K.; Butt, H. Int. J. Nanomed. 2020, 15, 3887–3901. DOI: https://doi.org/10.2147/ijn.s245743. DOI: https://doi.org/10.2147/IJN.S245743

Gigliuto, A.; Cigala, R. M.; Irto, A.; Felice, M. R.; Pettignano, A.; Milea, D.; Materazzi, S.; Stefano, C. D.; Crea, F. Biomolecules. 2021, 11, 1312. DOI: https://doi.org/10.3390/biom11091312. DOI: https://doi.org/10.3390/biom11091312

Soleimani, F.; Afshari, T.; Mokhtari, F.; Gharib, F. J. Chem. Thermodyn. 2015, 83, 6–11. DOI: https://doi.org/10.1016/j.jct.2014.11.013. DOI: https://doi.org/10.1016/j.jct.2014.11.013

Bellová, R.; Melicherčíková, D.; Tomčík, P. J. Chem. Educ. 2018, 95, 1548–1553. DOI: https://doi.org/10.1021/acs.jchemed.8b00086. DOI: https://doi.org/10.1021/acs.jchemed.8b00086

Clark, T. M.; Dickson-Karn, N. M.; Anderson, E. J. Chem. Educ. 2022, 99 (4), 1587–1595. DOI: https://doi.org/10.1021/acs.jchemed.1c00819. DOI: https://doi.org/10.1021/acs.jchemed.1c00819

Styn, R.; Holtz, A.; Biselli, A.; Kaminski, S.; Jupke, A. J. Solut. Chem. 2022, 51, 517–539. DOI: https://doi.org/10.1007/s10953-022-01146-2. DOI: https://doi.org/10.1007/s10953-022-01146-2

Ma, J.; Shu, H.; Yang, B.; Byrne, R. H.; Yuan, D. Anal. Chim. Acta. 2019, 1081, 18–31. DOI: https://doi.org/10.1016/j.aca.2019.06.024. DOI: https://doi.org/10.1016/j.aca.2019.06.024

Millero, F. J.; Graham, T. B.; Huang, F.; Bustos-Serrano, H.; Pierrot, D. Mar. Chem. 2006, 100, 80–94. DOI: https://doi.org/10.1016/j.marchem.2005.12.001. DOI: https://doi.org/10.1016/j.marchem.2005.12.001

Briones-Guerash-S. U.; García-Mendoza, A.; Aguilar-Cordero, J. C. J. Chem. Educ. 2023, 100, 4663–4673. DOI: https://doi.org/10.1021/acs.jchemed.3c00790. DOI: https://doi.org/10.1021/acs.jchemed.3c00790

Burgot, J. L., in: Ionic Equilibria in Analytical Chemistry, 1st ed.; Springer Science & Business Media, 2012. DOI: https://doi.org/10.1007/978-1-4419-8382-4

Butler, J. N.; Cogley, D. R., in: Ionic Equilibrium: Solubility and pH Calculations, 2nd ed.; John Wiley & Sons, Inc., 1998.

Kahlert, H.; Scholz, F., in: Acid-Base Diagrams; Springer Science & Business Media, 2013. DOI: https://doi.org/10.1007/978-3-642-37902-4

Castellan, G. W., in: Physical Chemistry, 3rd ed.; 1983.

Martell, A. E.; Smith, R. M., in: Critical Stability Constants. Volume 2: Amines; Lenum Press, 1975; Vol. 2. DOI: https://doi.org/10.1007/978-1-4613-4452-0. DOI: https://doi.org/10.1007/978-1-4613-4452-0

Martell, A. E.; Smith, R. M., in: Critical Stability Constants. Volume 3: Other Organic Ligands; Springer Science+Business Media, 1977; Vol. 3. DOI: https://doi.org/10.1007/978-1-4757-1568-2. DOI: https://doi.org/10.1007/978-1-4757-1568-2

Martell, A. E.; Smith, R. M., in: Critical Stability Constants. Volume 4: Inorganic Complexes; Springer Science+Business Media, 1976; Vol. 4. DOI: https://doi.org/10.1007/978-1-4757-5506-0. DOI: https://doi.org/10.1007/978-1-4757-5506-0

Martell, A. E.; Smith, R. M., in: Critical Stability Constants. Volume 5: First Supplement; Springer Science+Business Media, 1982; Vol. 5. DOI: https://doi.org/10.1007/978-1-4615-6761-5 DOI: https://doi.org/10.1007/978-1-4615-6761-5

Martell, A. E.; Smith, R. M., in: Critical Stability Constants. Volume 6: Second Supplement; Springer Science+Business Media, 1989; Vol. 6. DOI: https://doi.org/10.1007/978-1-4615-6764-6. DOI: https://doi.org/10.1007/978-1-4615-6764-6

Brown, P. L.; Ekberg, C., in: Hydrolysis of Metal Ions; John Wiley & Sons, 2016. DOI: https://doi.org/10.1002/9783527656189

Atkins, P.; de Paula, J., in: Physical Chemistry, 9th ed.; W. H. Freeman and Company, 2014.

Gagliardi, L. G.; Castells, C. B.; Ràfols, C.; Rosés, M.; Bosch, E. J. Chem. Eng. Data. 2007, 52, 1103–1107. DOI: https://doi.org/10.1021/je700055p. DOI: https://doi.org/10.1021/je700055p

Helgeson, H. C.; Kirkham, D. H. Am. J. Sci. 1974, 274, 1199–1261. DOI: https://doi.org/10.2475/ajs.274.10.1199. DOI: https://doi.org/10.2475/ajs.274.10.1199

Fegley, B., in: Practical Chemical Thermodynamics for Geoscientists; Elsevier, 2013.

Khan, M. N.; Warrier, P.; Peters, C. J.; Koh, C. A. J. Nat. Gas Sci. Eng. 2016, 35, 1355–1361. DOI: https://doi.org/10.1016/j.jngse.2016.03.092. DOI: https://doi.org/10.1016/j.jngse.2016.03.092

Burgot, J. L., in: The Notion of Activity in Chemistry, 1st ed.; Springer, 2016. DOI: https://doi.org/10.1007/978-3-319-46401-5

Millero, F. J., in: Chemical Oceanography; CRC Press, 2016. DOI: https://doi.org/10.1201/b14753

Jouyban, A.; Soltanpour, S.; Chan, H.-K. Int. J. Pharm. 2004, 269, 353–360. DOI: https://doi.org/10.1016/j.ijpharm.2003.09.010. DOI: https://doi.org/10.1016/j.ijpharm.2003.09.010

Catenaccio, A.; Daruich, Y.; Magallanes, C. Chem. Phys. Lett. 2003, 367, 669–671. DOI: https://doi.org/10.1016/S0009-2614(02)01735-9

Massel, S. R., in: Internal Gravity Waves in the Shallow Seas; Springer, 2015. DOI: https://doi.org/10.1007/978-3-319-18908-6. DOI: https://doi.org/10.1007/978-3-319-18908-6_2

Marcus, Y. Chem. Rev. 2001, 88, 1475–1498. DOI: https://doi.org/10.1021/cr00090a003

Jenkins, B.; Thankur, K. P. J. Chem. Educ. 1979, 56, 576–577. DOI: https://doi.org/10.1021/ed056p576. DOI: https://doi.org/10.1021/ed056p576

Roobottom, H. K.; Jenkins, H. D. B.; Passmore, J.; Glasser, L. J. Chem. Educ. 1999, 76, 1570. DOI: https://doi.org/10.1021/ed076p1570. DOI: https://doi.org/10.1021/ed076p1570

Bandura, A. V.; N, L. S. The J. Phys. Chem. Ref. Data. 2006, 35, 15–30. DOI: https://doi.org/10.1063/1.1928231. DOI: https://doi.org/10.1063/1.1928231

Hunter, K. A., in: Acid-base Chemistry of Aquatic Systems, 1999.

Brown, A. M. Comput. Methods Programs Biomed. 2001, 65, 191–200. DOI: https://doi.org/10.1016/S0169-2607(00)00124-3 DOI: https://doi.org/10.1016/S0169-2607(00)00124-3

de Levie, R., in: How to Use Excel® in Analytical Chemistry and in General Scientific Data Analysis; Cambridge University Press, 2001. DOI: https://doi.org/10.1017/CBO9780511808265

Kiliç, E.; Aslan, N. Microchim. Acta. 2005, 151, 89–92. DOI: https://doi.org/10.1007/s00604-005-0380-1. DOI: https://doi.org/10.1007/s00604-005-0380-1

Harned, H. S.; Ehlers, R. W. J. Am. Chem. Soc. 1933, 55, 652–656. DOI: https://doi.org/10.1021/ja01329a027. DOI: https://doi.org/10.1021/ja01329a027

Gordus, A. A. J. Chem. Educ. 1991, 68 397. DOI: https://doi.org/10.1021/ed068p397. DOI: https://doi.org/10.1021/ed068p397

Trémillon, B., in: Chemistry in Non-Aqueous Solvents; D. Reidel Publishing Company: Boston, USA, 1974. DOI: https://doi.org/10.1007/978-94-010-2123-4. DOI: https://doi.org/10.1007/978-94-010-2123-4

Charlot, G.; Trémillon, B., in: Chemical Reactions in Solvents and Melts, First ed.; Harvey, D., Translator; Pergamon Press, 1969. DOI: https://doi.org/10.1016/B978-0-08-012678-4.50017-8

Burke, J. D. J. Chem. Educ. 1976, 53, 79. DOI: https://doi.org/10.1021/ed053p79. DOI: https://doi.org/10.1021/ed053p79

Boisen, O.; Corral, A.; Pope, E.; Goeltz, J. C. J. Chem. Educ. 2019, 96, 1418–1423. DOI: https://doi.org/10.1021/acs.jchemed.8b00812. DOI: https://doi.org/10.1021/acs.jchemed.8b00812

Bard, A. J.; Faulkner, L. R., in: Electrochemical Methods; Wiley, 2000.

×

Downloads

Additional Files

Published

2025-04-01

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...