Intermolecular Lennard-Jones (22-11)Potential Energy Surface in Dimer of N8 Cubane Cluster
DOI:
https://doi.org/10.29356/jmcs.v59i2.20Keywords:
Nitrogen cluster, IPES, Lennard-Jones (22-11) potential, second virial coefficient, BSSE, ab initio, DFTAbstract
We have calculated the intermolecular potential energy surface (IPES) of the dimer of cubic N8 cluster using ab initio and the density functional theory (DFT) calculations. The ab initio (HF/3- 21G(d)) and DFT (B3LYP/6-31G(d) and aug-cc-pVDZ) calculations were performed for two relative orientations of N8-N8 system as a function of separation distance between the centers of cubic N8 clusters. In this research, the IPES, U(r), of the N8-N8 system is studied, where the edge of N8 approaches to face or edge of the other considered N8. Then, the Lennard-Jones (12-6) and (22-11) adjustable parameters are fitted to the computed interaction energies for edge-face and edge-edge orientations. In this research for the first time, the IPESs proportionated to the Lennard-Jones (22-11) potential are derived that are compatible with the computed IPES curves. Assuming a set of Lennard-Jones parameters, the second virial coefficients are obtained for the N8-N8 complex at a temperature range of 298 to 1000 K. Both the corrected and uncorrected basis set superposition error (BSSE) results are presented confirming the significance of including BSSE corrections.
Downloads
References
Hammerl, A.; Klapotke, T. M.; Schwerdtfeger, P. Chem. Eur. J. 2003, 9, 5511-5519. DOI: https://doi.org/10.1002/chem.200305125
Christe, K. O. Prop. Explos. Pyrotech. 2007, 32, 194-204.
Najafpour, J.; Foroutan-Nejad, C.; Shafiee, G. H.; Kordi-Peykani, M. Computational and Theoretical Chemistry. 2011, 974, 86-91. DOI: https://doi.org/10.1016/j.comptc.2011.07.013
Dixon, D. A.; Feller, D.; Christe, K. O.; Wilson, W. W.; Vij, A.; Vij, V.; Jenkins, H. D. B.; Olson, R. M.; Gordon, M. S. J. Am. Chem. Soc. 2004, 126, 834-843. DOI: https://doi.org/10.1021/ja0303182
Fau, S.; Wilson, K. J.; Bartlett, R. J. J. Phys. Chem. A 2002, 106, 4639-4644. DOI: https://doi.org/10.1021/jp015564j
Ha, T. -K.; Suleimenov, O.; Nguyen, M. T. Chem. Phys. Lett. 1999, 315, 327-334. DOI: https://doi.org/10.1016/S0009-2614(99)01271-3
Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93-113. DOI: https://doi.org/10.1016/S0010-8545(03)00101-2
Cheng, L. P.; Li, S.; Li, Q. S. Int. J. Quant. Chem. 2004, 97, 933-943. DOI: https://doi.org/10.1002/qua.10813
Gu, J. -D.; Chen, K. -X.; Jiang, H. -L.; Chen, J. -Z.; Ji, R. -Y.; Ren, Y.; Tian, A. -M. J. Mol. Struct. (THEOCHEM). 1998, 428, 183-188. DOI: https://doi.org/10.1016/S0166-1280(97)00277-7
Gagliardi, L.; Evangelisti, S.; Roos, B. O.; Widmark, P. -O. J. Mol. Struct. (THEOCHEM) .1998, 428, 1-8. DOI: https://doi.org/10.1016/S0166-1280(97)00256-X
Zhou, H.; Zheng, W.; Wang, X.; Ren, Y.; Wong, N. -B.; Shu, Y.; Tian, A. J. Mol. Struct. (THEOCHEM). 2005, 732, 139-148. DOI: https://doi.org/10.1016/j.theochem.2005.05.035
Sharma, H.; Garg, I.; Dharamvir, K.; Jindal, V. K. J. Phys. Chem. C. 2010, 114, 9153-9160. DOI: https://doi.org/10.1021/jp908755r
Chung, G.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem. A. 2000, 104, 5647-5650. DOI: https://doi.org/10.1021/jp0004361
Hirshberg, B.; Gerber, R. B.; Krylov, A. I. Nature Chemistry. 2014, 6, 52-56. DOI: https://doi.org/10.1038/nchem.1818
Christe, K. O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. Angew. Chem. Int. Ed. 1999, 38, 2004-2009. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7
Vij, A.; Wilson, W. W.; Vij, V.; Tham. F. S.; Sheehy, J. A.; Christe, K. O. J. Am. Chem. Soc. 2001, 123, 6308-6313. DOI: https://doi.org/10.1021/ja010141g
Vij, A.; Pavlovich, J. G.; Wilson, W. W.; Vij, V.; Christe, K. O. Angew. Chem. Int. Ed. 2002, 41, 3051-3054. DOI: https://doi.org/10.1002/1521-3773(20020816)41:16<3051::AID-ANIE3051>3.0.CO;2-T
Ostmark, H.; Wallin, S.; Brinck, T.; Carlqvist, P.; Claridge, R.; Hedlund, E.; Yudina, L. Chem. Phys. Lett. 2003, 379, 539-546. DOI: https://doi.org/10.1016/j.cplett.2003.08.081
Wilson, W. W.; Vij, A.; Vij, V.; Bernhardt, E.; Christe, K. O. Chem. Eur. J. 2003, 9, 2840-2844. DOI: https://doi.org/10.1002/chem.200304973
Butler, R. N.; Stephens, J. C.; Burke, L. A. Chem. Commun. 2003, 8, 1016-1017. DOI: https://doi.org/10.1039/b301491f
Schroer, T.; Haiges, R.; Schneider, S.; Christe, K. O. Chem. Commun. 2005, 12, 1607-1609. DOI: https://doi.org/10.1039/b417010e
Butler, R. N.; Hanniffy, J. M.; Stephens, J. C.; Burke, L. J. Org. Chem. 2008, 73, 1354-1364. DOI: https://doi.org/10.1021/jo702423z
Engelke, R.; Stine, J. R. J. Phys. Chem. 1990, 94, 5689-5694. DOI: https://doi.org/10.1021/j100378a018
Lauderdale, W. J.; Stanton, J. F.; Bartlett, R. J. J. Phys. Chem. 1992, 96, 1173-1178. DOI: https://doi.org/10.1021/j100182a029
Leininger, M. L.; Sherrill C. D.; Schaefer, III, H. J. Phys. Chem. 1995, 99, 2324-2328. DOI: https://doi.org/10.1021/j100008a013
Gagliardi, L.; Evangelisti1, S.; Widmark, P. O.; Roos, B. O. Theor. Chem. Acc. 1997, 97, 136-142. DOI: https://doi.org/10.1007/s002140050246
Smith, L. R. J. Chem. Ed. 1978, 55, 569-570. DOI: https://doi.org/10.1021/ed055p569
March, J. Advanced Organic Chemistry New York, Wiley, 1985.
Eaton, P. E.; Cole, T. W. J. Am. Chem. Soc. 1964, 86, 3157-3158. DOI: https://doi.org/10.1021/ja01069a041
Li, A. H. –T.; Chaoa, S. D. J. Chem. Phys. 2006, 125, 094312.
Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553-566. DOI: https://doi.org/10.1080/00268977000101561
Monajjemi, M.; Khaleghian, M.; Mollaamin, F. Molecular Simulation. 2010, 36, 865-870. DOI: https://doi.org/10.1080/08927022.2010.489557
Shi, Y.; Brenner, D. W. J. Chem. Phys. 2007, 127, 134503. DOI: https://doi.org/10.1063/1.2779877
Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. DOI: https://doi.org/10.1063/1.464913
Becke, A. D. Phys. Rev. A. 1998, 38, 3098-3100. DOI: https://doi.org/10.1103/PhysRevA.38.3098
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785-789. DOI: https://doi.org/10.1103/PhysRevB.37.785
Woon, D. E.; Dunning Jr, T. H. J. Chem. Phys. 1993, 98, 1358- 1371. DOI: https://doi.org/10.1063/1.464303
Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622. DOI: https://doi.org/10.1103/PhysRev.46.618
Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83-89. DOI: https://doi.org/10.1016/0009-2614(89)87442-1
Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257-2261. DOI: https://doi.org/10.1063/1.1677527
Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comp. Chem. 1983, 4, 294-301. DOI: https://doi.org/10.1002/jcc.540040303
Hariharan, P. C. Pople, J. A. Theor. Chim. Acta. 1973, 28, 213-222. DOI: https://doi.org/10.1007/BF00533485
Spartan ‘10, Version 1.1.0, Deppmeier, B. J.; Driessen, A. J.; Hehre, T. S.; Hehre, W. J.; Johnson, J. A.; Klunzinger, P. E.; Leonard, J. M.; Pham, I. N., Pietro, W. J.; Yu, Jianguo, Irvine, CA, Wavefunction, Inc., 2011.
Sordo, J. A. J. Mol. Struct. (THEOCHEM) 2001, 537, 245-251. DOI: https://doi.org/10.1016/S0166-1280(00)00681-3
Mierzecki, R. Intermolecular Interactions Warsaw, PWN, 1974.
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
