Electrochemistry for Solar Energy Conversion Systems: A Selection of Mexican Contributions

Authors

DOI:

https://doi.org/10.29356/jmcs.v67i4.2048

Keywords:

Electrodeposition, thermosolar systems, dye-sensitized solar cells, electrochemistry, solar energy

Abstract

Abstract. Electrochemistry is a key technology to synthesize, study and scale-up materials and processes for applications in solar energy conversion systems. Mexico has had a tradition of excellence in electrochemistry research and methodology development, and this paper intends to honor some of the key contributors in the subjects of solar energy conversion to useful heat or electricity. We summarize the use of electrochemical techniques as a tool for the deposition and characterization, including the analysis of electrodeposition solutions and deposition mechanisms. In addition, we describe the use of electrodeposited and hybrid ZnO films for application in dye-sensitized solar cells, which are photoelectrochemical systems, and discuss the mechanisms that govern solar cell performance.

 

Resumen. La electroquímica es una tecnología clave para sintetizar, estudiar y escalar materiales y procesos para aplicaciones en sistemas de conversión de energía solar. México ha tenido una tradición de excelencia en la investigación y el desarrollo de metodologías electroquímicas, y este documento tiene la intención de honrar a algunos de los principales contribuyentes en los temas de conversión de energía solar en calor o electricidad útil. Resumimos el uso de técnicas electroquímicas como herramienta para la deposición y caracterización, incluyendo el análisis de soluciones de electrodepósito y mecanismos de deposición. Además, se describe el uso de películas de ZnO híbridas y electrodepositadas para su aplicación en celdas solares sensibilizadas con tinte, que son sistemas fotoelectroquímicos, y discutimos los mecanismos que gobiernan el rendimiento de las celdas solares.

Downloads

Download data is not yet available.

Author Biographies

Francisco Ivan Lizama-Tzec, CINVESTAV-Mérida

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Manuel Rodríguez-Pérez, Universidad Autónoma de Campeche

Facultad de Ingeniería, Universidad Autónoma de Campeche-Campus V, C.P.24085, San Francisco de Campeche, México.

Alberto Vega-Poot, CINVESTAV-Mérida

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Universidad Modelo, Carretera a Cholul, Mérida, Yucatán México.

Dallely Melissa Herrera-Zamora, Instituto de Energías Renovables de la Universidad Nacional Autónoma de México (IER-UNAM)

Instituto de Energías Renovables de la Universidad Nacional Autónoma de México (IER-UNAM), Privada Xochicalco s/n Temixco, Morelos 62580, México.

Manuel Alejandro Estrella-Gutiérrez, Facultad de Ingeniería Química, Universidad Autónoma de Yucatán

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán. Periférico Norte, Km 33.5,

Esdras Canto-Aguilar, Department of Physics, Umeå University

Department of Physics, Umeå University, SE-90187 Umeå, Sweden.

Marco Cetina-Dorantes, Department of Applied Physics, CINVESTAV-IPN

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Gerko Oskam, Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yucatán 97310, México.

Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Seville, 41013, Spain

References

Khalil, A.; Khaira, A. M.; Abu-Shanab, R. H.; Abdelgaied, M. A. Sol. Energy. 2023, 253, 154–174. DOI: https://doi.org/10.1016/j.solener.2023.02.032. DOI: https://doi.org/10.1016/j.solener.2023.02.032

Abdalla, A. N.; Jing, W.; Nazir, M. S.; Jiang, M.; Tao, H. in: Socio-Economic Impacts of Solar Energy Technologies for Sustainable Green Energy: A Review; Springer Netherlands, 2022. DOI: https://doi.org/10.1007/s10668-022-02654-3. DOI: https://doi.org/10.1007/s10668-022-02654-3

Kennedy, C. E. Natl. Renew. Energy Lab. 2002, 1-53.

Trejo, G.; Ruiz, H.; Borges, R. O.; Meas, Y. J. Appl. Electrochem. 2001, 31, 685–692. DOI: https://doi.org/10.1023/A:1017580025961. DOI: https://doi.org/10.1023/A:1017580025961

Soto, A. B.; Arce, E. M.; Palomar-Pardavé, M.; González, I. Electrochim. Acta. 1996, 41, 2647–2655. DOI: https://doi.org/10.1016/0013-4686(96)00088-6. DOI: https://doi.org/10.1016/0013-4686(96)00088-6

Ibanez, J. G.; Ibanez, J. G.; Choi, C.; Becker, R. S. J. Electrochem. Soc. 1987, 134, 3083–3089. DOI: https://doi.org/10.1149/1.2100344. DOI: https://doi.org/10.1149/1.2100344

Liu, H.; Zhao, X.; Yang, Y.; Li, Q.; Lv, J. Adv. Mater. 2008, 20, 2050–2054. DOI: https://doi.org/10.1002/adma.200702624. DOI: https://doi.org/10.1002/adma.200702624

Vullum, F.; Teeters, D. J. Power Sources. 2005, 146, 804–808. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086. DOI: https://doi.org/10.1016/j.jpowsour.2005.03.086

Lizama-Tzec, F. I.; Frutis, A.; Gattorno, G.; Oskam, G. J. New Mater. Electrochem. Syst. 2013, 16, 209–215. DOI: https://doi.org/10.14447/jnmes.v16i3.20. DOI: https://doi.org/10.14447/jnmes.v16i3.20

Lizama-Tzec, F. I.; Canché-Canul, L.; Oskam, G. Electrochim. Acta. 2011, 56, 9391–9396. DOI: https://doi.org/10.1016/j.electacta.2011.08.023. DOI: https://doi.org/10.1016/j.electacta.2011.08.023

Herderick, E. D.; Reddy, K. M.; Sample, R. N.; Draskovic, T. I.; Padture, N. P. Appl. Phys. Lett. 2009, 95, 1–4. DOI: https://doi.org/10.1063/1.3263733. DOI: https://doi.org/10.1063/1.3263733

Barrera, E.; González, I.; Viveros, T. Sol. Energy Mater. Sol. Cells. 1998, 51, 69–82. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2. DOI: https://doi.org/10.1016/S0927-0248(97)00209-2

Lizama-Tzec, F. I.; Macías, J. D.; Estrella-Gutiérrez, M. A.; Cahue-López, A. C.; Arés, O.; de Coss, R.; Alvarado-Gil, J. J.; Oskam, G. J. Mater. Sci. Mater. Electron. 2015, 26, 5553-5561. DOI: https://doi.org/10.1007/s10854-014-2195-5. DOI: https://doi.org/10.1007/s10854-014-2195-5

Ortiz, Z. I.; Díaz-Arista, P.; Meas, Y.; Ortega-Borges, R.; Trejo, G. Corros. Sci. 2009, 51, 2703–2715. DOI: https://doi.org/10.1016/j.corsci.2009.07.002. DOI: https://doi.org/10.1016/j.corsci.2009.07.002

Trejo, G.; Ortega, R.; Meas, Y.; Chainet, E.; Ozil, P. J. Appl. Electrochem. 2003, 33, 373–379. DOI: https://doi.org/10.1023/A:1024466604939. DOI: https://doi.org/10.1023/A:1024466604939

Rivas-Esquivel, F. M.; Brisard, G. M.; Ortega-Borges, R.; Trejo, G.; Escobedo, P. Int. J. Electrochem. Sci 2017, 12, 2026–2041. DOI: https://doi.org/10.20964/2017.03.58. DOI: https://doi.org/10.20964/2017.03.58

17. Luis Ortiz-Aparicio, J.; Meas, Y.; Trejo, G.; Ortega, R.; Chapman, T. W.; Chainet, E. J Appl Electrochem 2013, 43, 289–300. DOI: https://doi.org/10.1007/s10800-012-0518-x. DOI: https://doi.org/10.1007/s10800-012-0518-x

Duffie, J. A.; Beckman, W. A.; Worek, W. M., in: Solar Engineering of Thermal Processes, 1994, 67-70. DOI: https://doi.org/10.1115/1.2930068

Xiao, X.; Miao, L.; Xu, G.; Lu, L.; Su, Z.; Wang, N.; Tanemura, S. Appl. Surf. Sci. 2011, 257, 10729–10736. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088. DOI: https://doi.org/10.1016/j.apsusc.2011.07.088

Garcia-Valladares, O.; Figueroa, I. P., in: Aplicaciones Térmicas de La Energía Solar, 2017, 1-156.

Esposito, S.; Antonaia, A.; Addonizio, M. L.; Aprea, S. Thin Solid Films. 2009, 517, 6000–6006. DOI: https://doi.org/10.1016/j.tsf.2009.03.191. DOI: https://doi.org/10.1016/j.tsf.2009.03.191

Selvakumar, N.; Barshilia, H. C. Sol. Energy Mater. Sol. Cells. 2012, 98, 1–23. DOI: https://doi.org/10.1016/j.solmat.2011.10.028. DOI: https://doi.org/10.1016/j.solmat.2011.10.028

Salmi, J.; Bonino, J. P.; Bes, R. S. J. Mater. Sci. 2000, 35, 1347–1351. DOI: https://doi.org/10.1023/A:1004773821962. DOI: https://doi.org/10.1023/A:1004773821962

Klochko, N. P.; Klepikova, K. S.; Tyukhov, I. I.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Kopach, A. V.; Starikov, V. V.; Kirichenko, M. V. Sol. Energy. 2015, 117, 1–9. DOI: https://doi.org/10.1016/j.solener.2015.03.047. DOI: https://doi.org/10.1016/j.solener.2015.03.047

Koltun, M.; Gukhman, G.; Gavrilina, A. Sol. Energy Mater. Sol. Cells. 1994, 33, 41–44. DOI: https://doi.org/10.1016/0927-0248(94)90287-9. DOI: https://doi.org/10.1016/0927-0248(94)90287-9

Shawki, S.; Mikhail, S. Mater. Manuf. Process. 2000, 15, 737–746. DOI: https://doi.org/10.1080/10426910008913017. DOI: https://doi.org/10.1080/10426910008913017

John, S. Met. Finish. 1997, 95, 84–86. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9. DOI: https://doi.org/10.1016/S0026-0576(97)88982-9

Estrella-Gutiérrez, M. A.; Lizama-Tzec, F. I.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta 2016, 213, 460–468. DOI: https://doi.org/10.1016/j.electacta.2016.07.125. DOI: https://doi.org/10.1016/j.electacta.2016.07.125

Lizama-Tzec, F. I.; Manterola-Villanueva, G.; García-Valladares, O.; Herrera-Zamora, D. M.; Oskam, G.; Rodríguez-Gattorno, G. J. Energy, Eng. Optim. Sustain. 2023, 7, 49-62. DOI: 10.19136/jeeos.a7n2.5677.

Herrera-Zamora, D. M.; Lizama-Tzec, F. I.; Santos-González, I.; Rodríguez-Carvajal, R. A.; García-Valladares, O.; Arés-Muzio, O.; Oskam, G. Sol. Energy. 2020, 207, 1132–1145. DOI: https://doi.org/10.1016/j.solener.2020.07.042. DOI: https://doi.org/10.1016/j.solener.2020.07.042

Smith, G. B.; Ignatiev, A.; Zajac, G. J. Appl. Phys. 1980, 51, 4186–4196. DOI: https://doi.org/10.1063/1.328276. DOI: https://doi.org/10.1063/1.328276

Prakash, E. S.; Madhukeshwaran, N. Int. J. Energy Environ. 2012, 3, 2076-2909.

Kruidhof, W.; van der Leij, M. Sol. Energy Mater. Sol. Cells. 1979, 2, 69–79. DOI: https://doi.org/10.1016/0165-1633(79)90031-5

Barrera, E.; Pardavé, M. P.; Batina, N.; González, I. J. Electrochem. Soc. 2000, 147, 1787-1796. DOI: https://doi.org/10.1149/1.1393435. DOI: https://doi.org/10.1149/1.1393435

Barrera, C. E.; Salgado, L.; Morales, U.; González, I. Renew. Energy. 2001, 24, 357–364. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9. DOI: https://doi.org/10.1016/S0960-1481(01)00017-9

John, S.; Nagarani, N.; Rajendran, S. Sol. Energy Mater. 1991, 22, 293–302. DOI: https://doi.org/10.1016/0165-1633(91)90036-K. DOI: https://doi.org/10.1016/0165-1633(91)90036-K

Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Mater. Charact. 2005, 55, 83–91. DOI: https://doi.org/10.1016/j.matchar.2005.03.003. DOI: https://doi.org/10.1016/j.matchar.2005.03.003

Palomar-Pardavé, M.; Aldana-González, J.; Botello, L. E.; Arce-Estrada, E. M.; Ramírez-Silva, M. T.; Mostany, J.; Romero-Romo, M. Electrochim. Acta. 2017, 241, 162–169. DOI: https://doi.org/10.1016/j.electacta.2017.04.126. DOI: https://doi.org/10.1016/j.electacta.2017.04.126

Landa-Castro, M.; Aldana-González, J.; Montes de Oca-Yemha, M. G.; Romero-Romo, M.; Arce-Estrada, E. M.; Palomar-Pardavé, M. J. Alloys Compd. 2020, 830, 1–9. DOI: https://doi.org/10.1016/j.jallcom.2020.154650. DOI: https://doi.org/10.1016/j.jallcom.2020.154650

Manh, T. Le; Arce-Estrada, E. M.; Mejía-Caballero, I.; Aldana-González, J.; Romero-Romo, M.; Palomar-Pardavé, M. J. Electrochem. Soc. 2018, 165, D285–D290. DOI: https://doi.org/10.1149/2.0941807jes. DOI: https://doi.org/10.1149/2.0941807jes

Palomar-Pardavé, M.; González, I.; Soto, A. B.; Arce, E. M. J. Electroanal. Chem. 1998, 443, 125–136. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8. DOI: https://doi.org/10.1016/S0022-0728(97)00496-8

Barrera, C. E.; Lara, V. H.; Viveros, G. T.; González, M. I. Surf. Eng. 2000, 16, 50–53. DOI: https://doi.org/10.1179/026708400322911528. DOI: https://doi.org/10.1179/026708400322911528

Toghdori, G.; Rozati, S. M.; Memarian, N.; Arvand, M.; Bina, M. H. Proceedings of the World Renewable Energy Congress – Sweden, 2011, 57, 4021–4026. DOI: https://doi.org/10.3384/ecp110574021. DOI: https://doi.org/10.3384/ecp110574021

Vitt, B. Sol. Energy Mater. 1986, 13, 323–350. DOI: https://doi.org/10.1016/0165-1633(86)90082-1. DOI: https://doi.org/10.1016/0165-1633(86)90082-1

Vitt, B. Sol. Collect. 1987, 43, 244–252. DOI: https://doi.org/10.1016/0095-8956(87)90024-4

Rodriguez-Valadez, F.; Ortiz-Éxiga, C.; Ibanez, J. G.; Alatorre-Ordaz, A.; Gutierrez-Granados, S. Environ. Sci. Technol. 2005, 39, 1875–1879. DOI: https://doi.org/10.1021/es049091g. DOI: https://doi.org/10.1021/es049091g

Morales, U.; Meas, Y.; Poillerat, G. C. R. Seances Acad. Sci. 1984, 298, 117–119.

Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Archer, J.; John, C. Trans. Inst. Met. Finish. 2004, 82, 14–17. DOI: https://doi.org/10.1080/00202967.2004.11871547. DOI: https://doi.org/10.1080/00202967.2004.11871547

Ritchie, I. T.; Sharma, S. K.; Valignat, J.; Spitz, J. Sol. Energy Mater. 1979, 2, 167–176. DOI: https://doi.org/10.1016/0165-1633(79)90016-9. DOI: https://doi.org/10.1016/0165-1633(79)90016-9

Spitz, J.; Van Danh, T.; Aubert, A. Sol. Energy Mater. 1979, 1, 189–200. DOI: https://doi.org/10.1016/0165-1633(79)90037-6. DOI: https://doi.org/10.1016/0165-1633(79)90037-6

Raghunathan, K. Second Annu. Conf. Absorber Surfaces Sol. Receiv. 1979, 222.

Pettit, R. B.; Sowell, R. R.; Hall, I. J. Sol. Energy Mater. 1982, 7, 153–170. DOI: https://doi.org/10.1016/0165-1633(82)90081-8. DOI: https://doi.org/10.1016/0165-1633(82)90081-8

Xu, C.; Wang, X.; Liu, J. ACS Appl. Mater. Interfaces. 2022, 14, 33211-33218. DOI: https://doi.org/10.1021/acsami.2c07469. DOI: https://doi.org/10.1021/acsami.2c07469

Cetina-Dorantes, M.; Lizama-Tzec, F. I.; Estrella-Gutiérrez, M. A.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Oskam, G. Electrochim. Acta. 2021, 391, 11–17. DOI: https://doi.org/10.1016/j.electacta.2021.138906. DOI: https://doi.org/10.1016/j.electacta.2021.138906

Uma, C. S.; Malhotra, L. K.; Chopra, K. L. Bull. Mater. Sci. 1986, 8, 385–389. DOI: https://doi.org/10.1007/BF02744150. DOI: https://doi.org/10.1007/BF02744150

Asadi, M.; Rozati, S. M. Mater. Sci. Pol. 2017, 35, 355–361. DOI: https://doi.org/10.1515/msp-2017-0054. DOI: https://doi.org/10.1515/msp-2017-0054

Lizama-Tzec, F. I.; Herrera-Zamora, D. M.; Arés-Muzio, O.; Gómez-Espinoza, V. H.; Santos-González, I.; Cetina-Dorantes, M.; Vega-Poot, A. G.; García-Valladares, O.; Oskam, G. Sol. Energy, 2019, 194, 302–310. DOI: https://doi.org/10.1016/j.solener.2019.10.066. DOI: https://doi.org/10.1016/j.solener.2019.10.066

Macdonald, G. Thin Solid Films. 1980, 72, 83–87. DOI: https://doi.org/10.1016/0040-6090(80)90561-1

Wang, X.; Lee, E.; Xu, C.; Liu, J. Mater. Today Energy. 2021, 19, 100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609. DOI: https://doi.org/10.1016/j.mtener.2020.100609

Pethkar, S.; Takwale, M. G.; Agashe, C.; Bhide, V. G. Sol. Energy Mater. Sol. Cells 1993, 31, 109–117DOI: https://doi.org/10.1016/0927-0248(93)90044-4. DOI: https://doi.org/10.1016/0927-0248(93)90044-4

Geetha Priyadarshini, B.; Aich, S.; Chakraborty, M. J. Mater. Sci. 2011, 46, 2860–2873. DOI: https://doi.org/10.1007/s10853-010-5160-6. DOI: https://doi.org/10.1007/s10853-010-5160-6

Müller, S.; Giovannetti, F.; Reineke-Koch, R.; Kastner, O.; Hafner, B. Sol. Energy. 2019, 188, 865–874. DOI: https://doi.org/10.1016/j.solener.2019.06.064. DOI: https://doi.org/10.1016/j.solener.2019.06.064

Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. Renew. Energy. 2012, 39, 293–298. DOI: https://doi.org/10.1016/j.renene.2011.08.056. DOI: https://doi.org/10.1016/j.renene.2011.08.056

Moss, R. W.; Henshall, P.; Arya, F.; Shire, G. S. F.; Eames, P. C.; Hyde, T. Sol. Energy. 2018, 164, 109–118. DOI: https://doi.org/10.1016/j.solener.2018.02.004. DOI: https://doi.org/10.1016/j.solener.2018.02.004

Sakhaei, S. A.; Valipour, M. S. J. Therm. Anal. Calorim. 2020, 140, 1597–1610. DOI: https://doi.org/10.1007/s10973-019-09148-x. DOI: https://doi.org/10.1007/s10973-019-09148-x

Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. Nat. 2023, 613, 60-65. DOI: https://doi.org/10.1038/s41586-022-05460-z. DOI: https://doi.org/10.1038/s41586-022-05460-z

Pérez-González, M.; Tomás, S. A.; Santoyo-Salazar, J.; Gallardo-Hernández, S.; Tellez-Cruz, M. M.; Solorza-Feria, O. J. Alloys Compd. 2019, 779, 908–917.DOI: https://doi.org/10.1016/J.JALLCOM.2018.11.302. DOI: https://doi.org/10.1016/j.jallcom.2018.11.302

Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater. 2009, 21, 4087–4108. DOI: https://doi.org/10.1002/adma.200803827. DOI: https://doi.org/10.1002/adma.200803827

Natsume, Y.; Sakata, H. Thin Solid Films. 2000, 372, 30–36. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7. DOI: https://doi.org/10.1016/S0040-6090(00)01056-7

Ramírez-Ortega, D.; Meléndez, A. M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Electrochim. Acta. 2014, 140, 541–549. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2014.06.060. DOI: https://doi.org/10.1016/j.electacta.2014.06.060

Lopez, T.; Sanchez, E.; Bosch, P.; Meas, Y.; Gomez, R. Mater. Chem. Phys. 1992, 32, 141–152. DOI: https://doi.org/10.1016/0254-0584(92)90270-I. DOI: https://doi.org/10.1016/0254-0584(92)90270-I

Chen, Z.; Tang, Y.; Zhang, L.; Luo, L. Electrochim. Acta. 2006, 51, 5870–5875. DOI: https://doi.org/10.1016/J.ELECTACTA.2006.03.026. DOI: https://doi.org/10.1016/j.electacta.2006.03.026

Canava, B.; Lincot, D. J. Appl. Electrochem. 2000, 30, 711–716. DOI: https://doi.org/10.1023/A:1003857026200

Yu, J.; Yu, X. Environ. Sci. Technol. 2008, 42, 4902–4907. DOI: https://doi.org/10.1021/ES800036N/SUPPL_FILE/ES800036N-FILE003.PDF. DOI: https://doi.org/10.1021/es800036n

Pandey, P.; Kurchania, R.; Haque, F. Z. Optik (Stuttg). 2015, 126, 301–303. DOI: https://doi.org/10.1016/J.IJLEO.2014.08.160. DOI: https://doi.org/10.1016/j.ijleo.2014.08.160

Kolodziejczak-Radzimska, A.; Jesionowski, T. Mater. 2014, 7, 2833-2881. DOI: https://doi.org/10.3390/MA7042833. DOI: https://doi.org/10.3390/ma7042833

Maldonado, M.; Vega-Pérez, J.; Solorza-Feria, Mater. Sci. Eng. B. 2010, 174, 42–45. DOI: https://doi.org/10.1016/J.MSEB.2010.03.074. DOI: https://doi.org/10.1016/j.mseb.2010.03.074

Maldonado, A.; Asomoza, R.; Cañetas-Ortega, J.; Zironi, E. P.; Hernández, R.; Patiño, R.; Solorza-Feria, O. Sol. Energy Mater. Sol. Cells. 1999, 57, 331–344. DOI: https://doi.org/https://doi.org/10.1016/S0927-0248(98)00170-6. DOI: https://doi.org/10.1016/S0927-0248(98)00170-6

Ortiz-Aparicio, J. L.; Meas, Y.; Chapman, T. W.; Trejo, G.; Ortega, R.; Chainet, E. J. Appl. Electrochem. 2015, 45, 67–78. DOI: https://doi.org/10.1007/S10800-014 07779/FIGURES/6. DOI: https://doi.org/10.1007/s10800-014-0777-9

Rodríguez-Pérez, M.; Canto-Aguilar, E. J.; García-Rodríguez, R.; De Denko, A. T.; Oskam, G.; Osterloh, F. E. J. Phys. Chem. C. 2018, 122, 2582–2588. DOI: https://doi.org/10.1021/ACS.JPCC.7B11727/SUPPL_FILE/JP7B11727_SI_001.PDF. DOI: https://doi.org/10.1021/acs.jpcc.7b11727

Ballesteros, J. C.; Díaz-Arista, P.; Meas, Y.; Ortega, R.; Trejo, G. Electrochim. Acta. 2007, 52, 3686–3696. DOI: https://doi.org/https://doi.org/10.1016/j.electacta.2006.10.042. DOI: https://doi.org/10.1016/j.electacta.2006.10.042

Yoshida, T.; Komatsu, D.; Shimokawa, N.; Minoura, H. Thin Solid Films. 2004, 451, 166–169. DOI: https://doi.org/10.1016/j.tsf.2003.10.097. DOI: https://doi.org/10.1016/j.tsf.2003.10.097

Chang, G. J.; Lin, S. Y.; Wu, J. J. Nanoscale. 2014, 6, 1329–1334. DOI: https://doi.org/10.1039/c3nr05267b. DOI: https://doi.org/10.1039/C3NR05267B

Zi, M.; Zhu, M.; Chen, L.; Wei, H.; Yang, X.; Cao, B. Ceram. Int. 2014, 40, 7965–7970. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146. DOI: https://doi.org/10.1016/j.ceramint.2013.12.146

Nunes, V. F.; Souza, A. P. S.; Lima, F.; Oliveira, G.; Freire, F. N.; Almeida, A. F. Mater. Res. 2018, 21, 1–8. DOI: http://dx.doi.org/10.1590/1980-5373-MR-2017-0990. DOI: https://doi.org/10.1590/1980-5373-mr-2017-0990

Lima, F. A. S.; Vasconcelos, I. F.; Lira-Cantu, M. Ceram. Int. 2015, 41, 9314–9320. DOI: https://doi.org/https://doi.org/10.1016/j.ceramint.2015.03.271. DOI: https://doi.org/10.1016/j.ceramint.2015.03.271

Karuppuchamy, S., Nonomura, K., Yoshida, T., Sugiura, T.; Minoura, H. Solid State Ionics. 2002, 151, 19–27. DOI: https://doi.org/https://doi.org/10.1016/S0167-2738(02)00599-4. DOI: https://doi.org/10.1016/S0167-2738(02)00599-4

Gaikwad, M. A.; Suryawanshi, M. P.; Maldar, P. S.; Dongale, T. D.; Moholkar, A. V. Opt. Mater. 2018, 78, 325–334. DOI: https://doi.org/https://doi.org/10.1016/j.optmat.2018.02.040. DOI: https://doi.org/10.1016/j.optmat.2018.02.040

Marimuthu, T.; Anandhan, ·N; Thangamuthu, ·R; Surya, ·S. J. Mater. Sci. Mater. Electron. 2018, 29, 12830–12841. DOI: https://doi.org/10.1007/s10854-018-9402-8. DOI: https://doi.org/10.1007/s10854-018-9402-8

Linn, Y.; Yang, J.; Meng, Y. Ceram. Int. 2013, 39, 5049–5052. DOI: https://doi.org/10.1016/j.ceramint.2012.11.103

Şişman, İ.; Can, M.; Ergezen, B.; Biçer, M. RSC Adv. 2015, 5, 73692–73698. DOI: https://doi.org/10.1039/C5RA13623G. DOI: https://doi.org/10.1039/C5RA13623G

Kung, C.-W.; Chen, H.-W.; Lin, C.-Y.; Lai, Y.-H.; Vittal, R.; Ho, K.-C. Prog. Photovoltaics Res. Appl. 2014, 22, 440–451. DOI: https://doi.org/https://doi.org/10.1002/pip.2288. DOI: https://doi.org/10.1002/pip.2288

Canto-Aguilar, E. J.; González-Flores, C. A.; Peralta-Domínguez, D.; Andres-Castán, J. M.; Demadrille, R.; Rodríguez-Pérez, M.; Oskam, G. J. Electrochem. Soc. 2022, 169, 42504. DOI: https://doi.org/10.1149/1945-7111/ac62c8. DOI: https://doi.org/10.1149/1945-7111/ac62c8

Minoura, H.; Yoshida, T. Electrochemistry. 2008, 76, 109–117. DOI: https://doi.org/10.5796/electrochemistry.76.109. DOI: https://doi.org/10.5796/electrochemistry.76.109

Canto-Aguilar, E. J.; Rodríguez-Pérez, M.; García-Rodríguez, R.; Lizama-Tzec, F. I.; De Denko, A. T.; Osterloh, F. E.; Oskam, G. Electrochim. Acta. 2017, 258, 396–404. DOI: https://doi.org/10.1016/J.ELECTACTA.2017.11.075. DOI: https://doi.org/10.1016/j.electacta.2017.11.075

Bittner, F.; Oekermann, T.; Wark, M. Materials. 2018, 11, 232. DOI: https://doi.org/10.3390/ma11020232. DOI: https://doi.org/10.3390/ma11020232

Omar, A.; Abdullah, H. Renew. Sustain. Energy Rev. 2014, 31, 149–157. DOI: https://doi.org/10.1016/j.rser.2013.11.031. DOI: https://doi.org/10.1016/j.rser.2013.11.031

Sarker, S.; Seo, H. W.; Kim, D. M. J. Power Sources. 2014, 248, 739–744. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101. DOI: https://doi.org/10.1016/j.jpowsour.2013.09.101

Vega-Poot, A. G.; Macias-Montero, M.; Barranco, A.; Borras, A.; Gonzalez-Elipe, A. R.; Oskam, G.; Anta, J. A. Energy Environ. Focus. 2013, 2, 270–276. DOI: https://doi.org/10.1166/eef.2013.1062. DOI: https://doi.org/10.1166/eef.2013.1062

Pourjafari, D.; Oskam, G. Nanomater. Sol. Cell Appl. 2019, 145-204. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0. DOI: https://doi.org/10.1016/B978-0-12-813337-8.00006-0

Guillén, E.; Peter, L. M.; Anta, J. A. J. Phys. Chem. C 2011, 115, 22622–22632. DOI: https://doi.org/10.1021/jp206698t

Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, M.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562. DOI: https://doi.org/10.1021/ja805850q. DOI: https://doi.org/10.1021/ja805850q

Bisquert, J. Phys. Chem. Chem. Phys. 2003, 5, 5360–5364. DOI: https://doi.org/10.1039/b310907k. DOI: https://doi.org/10.1039/b310907k

Vega-Poot, A. G.; Macías-Montero, M.; Idígoras, J.; Borrás, A.; Barranco, A.; Gonzalez-Elipe, A. R.; Lizama-Tzec, F. I.; Oskam, G.; Anta, J. A. ChemPhysChem. 2014, 15, 1088–1097. DOI: https://doi.org/10.1002/cphc.201301068. DOI: https://doi.org/10.1002/cphc.201301068

Kouhestanian, E.; Mozaffari, S. A.; Ranjbar, M.; SalarAmoli, H.; Armanmehr, M. H. Superlattices Microstruct. 2016, 96, 82–94. DOI: https://doi.org/10.1016/j.spmi.2016.05.012. DOI: https://doi.org/10.1016/j.spmi.2016.05.012

Bisquert, J. J. Phys. Chem. B. 2002, 106, 325–333. DOI: https://doi.org/10.1021/jp011941g. DOI: https://doi.org/10.1021/jp011941g

Mohammadpour, R.; Zad, A. I.; Hagfeldt, A.; Boschloo, G. ChemPhysChem. 2010, 11, 2140–2145. DOI: https://doi.org/10.1002/cphc.201000125. DOI: https://doi.org/10.1002/cphc.201000125

Lee, K. M.; Lee, E. S.; Yoo, B.; Shin, D. H. Electrochim. Acta. 2013, 109, 181–186. DOI: https://doi.org/10.1016/j.electacta.2013.07.055. DOI: https://doi.org/10.1016/j.electacta.2013.07.055

Wang, H.; Wei, W.; Hu, Y. H. J. Mater. Chem. A. 2013, 1, 6622–6628. DOI: https://doi.org/10.1039/C3TA10892A. DOI: https://doi.org/10.1039/c3ta10892a

Pauporté, T.; Magne, C. Thin Solid Films. 2014, 560, 20–26. DOI: https://doi.org/10.1016/j.tsf.2013.11.121. DOI: https://doi.org/10.1016/j.tsf.2013.11.121

Lizama-Tzec, F. I.; García-Rodríguez, R.; Rodríguez-Gattorno, G.; Canto-Aguilar, E. J.; Vega-Poot, A. G.; Heredia-Cervera, B. E.; Villanueva-Cab, J.; Morales-Flores, N.; Pal, U.; Oskam, G. RSC Adv. 2016, 6, 37424–37433. DOI: https://doi.org/10.1039/c5ra25618f. DOI: https://doi.org/10.1039/C5RA25618F

Pérez-Hernández, G.; Vega-Poot, A.; Pérez-Juárez, I.; Camacho, J. M.; Arés, O.; Rejón, V.; Peña, J. L.; Oskam, G. Sol. Energy Mater. Sol. Cells. 2012, 100, 21–26. DOI: https://doi.org/10.1016/j.solmat.2011.05.012. DOI: https://doi.org/10.1016/j.solmat.2011.05.012

×

Downloads

Published

2023-09-19

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...