Electrochemical Oxidation Using Parallel Plate Flow Reactors as an Alternative Technique to Treat Single and Trichromy Dye Effluents
DOI:
https://doi.org/10.29356/jmcs.v67i4.2028Keywords:
Electrochemical oxidation, real textile effluents, electrocatalyst material, decolourization chemical oxygen demand, dissolved oxygen, turbidityAbstract
Abstract. Electrochemical oxidation (EO) has been investigated as an alternative treatment technique for the remediation of real textile effluents containing a single dye and a trichromy of Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) dyes, using a parallel plate flow reactor equipped with Ti/Pt or Ti/Pt-Sn-Sb electrocatalytic materials and Ti as cathode. The influence of the anode material and applied current densities on decolourization, organic matter decrease, cell potential and energy consumption during EO was examined. Higher color removal was achieved with Ti/Pt-Sn-Sb in all treated effluents compared to Ti/Pt at all electrolysis times, due to high oxidant production, especially hydroxyl radicals on their surface. Polymer film formation on the anode surface inhibited chemical oxygen demand (COD) removal during the treatment of a single effluent containing RY 3RS and RR-RR Gran dyes with either anode, whereas COD removal efficiencies of 13.93 % and 30.03 %, and 54.74 % and 74.48 % were obtained for Ti/Pt and Ti/Pt-Sn-Sb, respectively, in treating trichromy effluent after 240 min of electrolysis. Lower energy consumption was required by Ti/Pt-Sn-Sb compared to the Ti/Pt anode. In most of the trials studied, EO enhanced dissolved oxygen (DO) and reduced effluent turbidity, making it safe for disposal in the environment.
Resumen. La oxidación electroquímica (EO) se ha investigado como una técnica de tratamiento alternativa para la remediación de efluentes textiles reales que contienen un solo tinte y una tricromía de Remazol Yellow 3RS (RY 3RS), Remazol Red RR Gran (RR-RR Gran) y Navy Blue CL -R (NB CL-R), utilizando un reactor de flujo de placas paralelas equipado con materiales electrocatalíticos Ti/Pt o Ti/Pt-Sn-Sb y Ti como cátodo. Se examinó la influencia del material del ánodo y las densidades de corriente aplicadas sobre la decoloración, la reducción de materia orgánica, el potencial de celda y el consumo de energía durante la EO. Se logró una mayor remoción de color con Ti/Pt-Sn-Sb en todos los efluentes tratados en comparación con Ti/Pt en todos los tiempos de electrólisis, debido a la alta producción de oxidantes, especialmente radicales hidroxilos en su superficie. La formación de una película de polímero en la superficie del ánodo inhibió la eliminación de la demanda química de oxígeno (DQO) durante el tratamiento de un solo efluente que contenía colorantes RY 3RS y RR-RR Gran con cualquiera de los ánodos, mientras que las eficiencias de eliminación de DQO del 13,93 % y 30,03 %, y del 54,74 % y Se obtuvo 74,48 % para Ti/Pt y Ti/Pt-Sn-Sb, respectivamente, en el tratamiento de efluentes de tricromía después de 240 min de electrólisis. El Ti/Pt-Sn-Sb requería un menor consumo de energía en comparación con el ánodo de Ti/Pt. En la mayoría de los ensayos estudiados, el EO mejoró el oxígeno disuelto (OD) y redujo la turbidez del efluente, haciéndolo seguro para su eliminación en el medio ambiente.
Downloads
References
Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O. Appl. Catal. B. 2023, 328, 122430. DOI: https://doi.org/10.1016/J.APCATB.2023.122430. DOI: https://doi.org/10.1016/j.apcatb.2023.122430
Martínez-Huitle, C. A.; Panizza, M. Curr. Opin. Electrochem. 2018, 11, 62–71. DOI: https://doi.org/10.1016/j.coelec.2018.07.010. DOI: https://doi.org/10.1016/j.coelec.2018.07.010
Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O. Chem. Rev. 2015, 115, 13362–13407. DOI: https://doi.org/10.1021/acs.chemrev.5b00361. DOI: https://doi.org/10.1021/acs.chemrev.5b00361
Martínez-Huitle, C. A.; Scialdone, O.; Rodrigo, M. A., in: Electrochemical Water and Wastewater Treatment; Ed.; Elsevier: USA, 2018. DOI: https://doi.org/10.1016/C2016-0-04297-3. DOI: https://doi.org/10.1016/C2016-0-04297-3
Espinoza-Montero, P. J.; Martínez-Huitle, C. A.; Loor-Urgilés, L. D. J. Clean. Prod. 2023, 401, 136722. DOI: https://doi.org/10.1016/J.JCLEPRO.2023.136722. DOI: https://doi.org/10.1016/j.jclepro.2023.136722
Panizza, M.; Cerisola, G. Appl. Catal. B. 2007, 75, 95–101. DOI: https://doi.org/10.1016/J.APCATB.2007.04.001. DOI: https://doi.org/10.1016/j.apcatb.2007.04.001
Panizza, M.; Cerisola, G. Chem. Rev. 2009, 109, 6541–6569. DOI: https://doi.org/10.1021/cr9001319. DOI: https://doi.org/10.1021/cr9001319
Ganiyu, S. O.; Martínez-Huitle, C. A.; Oturan, M. A. Curr. Opin. Electrochem. 2021, 27. DOI: https://doi.org/10.1016/j.coelec.2020.100678. DOI: https://doi.org/10.1016/j.coelec.2020.100678
Espinoza-Montero, P. J.; Alulema-Pullupaxi, P.; Frontana-Uribe, B. A.; Barrera-Diaz, C. E. Curr. Opin. Solid. State Mater. Sci. 2022, 2, 100988. DOI: https://doi.org/10.1016/J.COSSMS.2022.100988. DOI: https://doi.org/10.1016/j.cossms.2022.100988
Brillas, E. Chemosphere. 2020, 250, 126198. DOI: https://doi.org/10.1016/j.chemosphere.2020.126198. DOI: https://doi.org/10.1016/j.chemosphere.2020.126198
Yang, N.; Yu, S.; MacPherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157–204. DOI: https://doi.org/10.1039/c7cs00757d. DOI: https://doi.org/10.1039/C7CS00757D
de Oliveira Silva, K. N.; Rodrigo, M. A.; dos Santos, E. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100962. DOI: https://doi.org/10.1016/J.COSSMS.2021.100962. DOI: https://doi.org/10.1016/j.cossms.2021.100962
Oliveira, H. L.; Barros, T. M.; Santos, J. E. L.; Gondim, A. D.; Quiroz, M. A.; Martínez-Huitle, C. A.; dos Santos, E. V. Electrochem. Commun. 2023, 154, 107553. DOI: https://doi.org/10.1016/j.elecom.2023.107553. DOI: https://doi.org/10.1016/j.elecom.2023.107553
Brillas, E. J. Mex. Chem. Soc. 2014, 58, 239–255. DOI: https://doi.org/10.29356/jmcs.v58i3.131. DOI: https://doi.org/10.29356/jmcs.v58i3.131
dos Santos, E. V.; Martínez-Huitle, C. A.; Rodrigo, M. A. Curr. Opin. Electrochem. 2023, 101267. DOI: https://doi.org/10.1016/J.COELEC.2023.101267. DOI: https://doi.org/10.1016/j.coelec.2023.101267
Sigcha-Pallo, C.; Peralta-Hernández, J. M.; Alulema-Pullupaxi, P.; Carrera, P.; Fernández, L.; Pozo, P.; Espinoza-Montero, P. J. Environ. Res. 2022, 212, 113362. DOI: https://doi.org/10.1016/J.ENVRES.2022.113362. DOI: https://doi.org/10.1016/j.envres.2022.113362
Carrera-Cevallos, J. V.; Prato-Garcia, D.; Espinoza-Montero, P. J.; Vasquez-Medrano, R. Water Air Soil Pollut. 2021, 232, 1–15. DOI: https://doi.org/10.1007/S11270-020-04941-Z/TABLES/2. DOI: https://doi.org/10.1007/s11270-020-04941-z
Bravo-Yumi, N.; Espinoza-Montero, P.; Picos-Benítez, A.; Navarro-Mendoza, R.; Brillas, E.; Peralta-Hernández, J. M. Electrochim. Acta. 2020, 358, 136904. DOI: https://doi.org/10.1016/J.ELECTACTA.2020.136904. DOI: https://doi.org/10.1016/j.electacta.2020.136904
Divyapriya, G.; Nidheesh, P. V. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100921. DOI: https://doi.org/10.1016/J.COSSMS.2021.100921. DOI: https://doi.org/10.1016/j.cossms.2021.100921
Pointer Malpass, G. R.; de Jesus Motheo, A. Curr. Opin. Electrochem. 2021, 27, 100689. DOI: https://doi.org/10.1016/J.COELEC.2021.100689. DOI: https://doi.org/10.1016/j.coelec.2021.100689
Ganiyu, S. O.; dos Santos, E. V.; Martínez-Huitle, C. A.; Waldvogel, S. R. Curr. Opin. Electrochem. 2022, 32, 100903. DOI: https://doi.org/10.1016/J.COELEC.2021.100903. DOI: https://doi.org/10.1016/j.coelec.2021.100903
Rodríguez-Narváez, O. M.; Picos, A. R.; Bravo-Yumi, N.; Pacheco-Alvarez, M.; Martínez-Huitle, C. A.; Peralta-Hernández, J. M. Curr. Opin. Electrochem. 2021, 29, 100806. DOI: https://doi.org/10.1016/J.COELEC.2021.100806. DOI: https://doi.org/10.1016/j.coelec.2021.100806
Clematis, D.; Panizza, M. Curr. Opin. Electrochem. 2021, 26, 100665. DOI: https://doi.org/10.1016/j.coelec.2020.100665. DOI: https://doi.org/10.1016/j.coelec.2020.100665
Brillas, E.; Martínez-Huitle, C. A. Appl. Catal. B. 2015, 166–167, 603–643. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016
Viana, D. F.; Salazar-Banda, G. R.; Leite, M. S. Sep. Sci. Technol. (Philadelphia) 2018, 53, 2647–2661. DOI: https://doi.org/10.1080/01496395.2018.1463264. DOI: https://doi.org/10.1080/01496395.2018.1463264
Candia-Onfray, C.; Thiam, A.; Salazar, C.; Martinez-Huitle, C. A.; Salazar, R. J. Electrochem. Soc. 2017, 164, E440–E447. DOI: https://doi.org/10.1149/2.1101713jes. DOI: https://doi.org/10.1149/2.1101713jes
Moura, D. C. De; Quiroz, M. A.; Silva, D. R. Da; Salazar, R.; Martínez-Huitle, C. A. Environ. Nanotechnol. Monit. Manag. 2016, 5, 13–20. DOI: https://doi.org/10.1016/j.enmm.2015.11.001. DOI: https://doi.org/10.1016/j.enmm.2015.11.001
Salazar, R.; Brillas, E.; Sirés, I. Appl. Catal. B. 2012, 115–116, 107–116. DOI: https://doi.org/10.1016/j.apcatb.2011.12.026. DOI: https://doi.org/10.1016/j.apcatb.2011.12.026
Guerra-Tapia, A.; Gonzalez-Guerra, E. Hair Cosmetics: Dyes. Actas Dermosifiliogr. 2014, 105, 833–839. DOI: https://doi.org/10.1016/j.adengl.2014.02.003. DOI: https://doi.org/10.1016/j.adengl.2014.02.003
Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T. Environ. Sci. Pollut. Res. 2013, 2099–2132. DOI: https://doi.org/10.1007/s11356-012-1385-z. DOI: https://doi.org/10.1007/s11356-012-1385-z
Benkhaya, S.; M’ rabet, S.; El Harfi, A. Inorganic Chem. Commun. 2020. DOI: https://doi.org/10.1016/j.inoche.2020.107891. DOI: https://doi.org/10.1016/j.inoche.2020.107891
Orts, F.; del Río, A. I.; Molina, J.; Bonastre, J.; Cases, F. J. Electroanal. Chem. 2018, 808, 387–394. DOI: https://doi.org/10.1016/J.JELECHEM.2017.06.051. DOI: https://doi.org/10.1016/j.jelechem.2017.06.051
Martínez-Huitle, C. A.; Ferro, S.; Reyna, S.; Cerro-López, M.; De Battisti, A.; Quiroz, M. A. J. Braz. Chem. Soc. 2008, 19, 150–156. DOI: https://doi.org/10.1590/S0103-50532008000100021. DOI: https://doi.org/10.1590/S0103-50532008000100021
Ferro, S.; Martínez-Huitle, C. A.; De Battisti, A. J. Appl. Electrochem. 2010, 40, 1779–1787. DOI: https://doi.org/10.1007/s10800-010-0113-y. DOI: https://doi.org/10.1007/s10800-010-0113-y
Martínez-Huitle, C. A.; Ferro, S.; De Battisti, A. Electrochim. Acta. 2004, 49, 4027–4034. DOI: https://doi.org/10.1016/j.electacta.2004.01.083. DOI: https://doi.org/10.1016/j.electacta.2004.01.083
Martínez-Huitle, C. A.; Ferro, S.; De Battisti, A. J. Appl. Electrochem. 2005, 35, 1087–1093. DOI: https://doi.org/10.1007/s10800-005-9003-0. DOI: https://doi.org/10.1007/s10800-005-9003-0
Garcia-Segura, S.; Brillas, E. Water Res. 2011, 45, 2975–2984. DOI: https://doi.org/10.1016/j.watres.2011.03.017. DOI: https://doi.org/10.1016/j.watres.2011.03.017
de Castro, C. M.; Olivi, P.; de Freitas Araújo, K. C.; Barbosa Segundo, I. D.; dos Santos, E. V.; Martínez-Huitle, C. A. Sci. Total Environ. 2023, 855, 158816. DOI: https://doi.org/10.1016/J.SCITOTENV.2022.158816. DOI: https://doi.org/10.1016/j.scitotenv.2022.158816
Fernades Rêgo, F. E.; Sales Solano, A. M.; Da Costa Soares, I. C.; Da Silva, D. R.; Martinez Huitle, C. A.; Panizza, M. J. Environ. Chem. Eng. 2014, 2, 875–880. DOI: https://doi.org/10.1016/j.jece.2014.02.017. DOI: https://doi.org/10.1016/j.jece.2014.02.017
Rocha, J. H. B.; Solano, A. M. S.; Fernandes, N. S.; da Silva, D. R.; Peralta-Hernandez, J. M.; Martínez-Huitle, C. A. Electrocatalysis 2012, 3, 1–12. DOI: https://doi.org/10.1007/s12678-011-0070-1. DOI: https://doi.org/10.1007/s12678-011-0070-1
Ferreira, M. B.; Rocha, J. H. B.; da Silva, D. R.; de Moura, D. C.; de Araújo, D. M.; Martinez-Huitle, C. A. J. Solid State Electrochem. 2016, 20, 2589–2597. DOI: https://doi.org/10.1007/s10008-016-3155-1. DOI: https://doi.org/10.1007/s10008-016-3155-1
Clematis, D.; Cerisola, G.; Panizza, M. Electrochem. Commun. 2017, 75, 21–24. DOI: https://doi.org/10.1016/j.elecom.2016.12.008. DOI: https://doi.org/10.1016/j.elecom.2016.12.008
Cotillas, S.; Llanos, J.; Cañizares, P.; Clematis, D.; Cerisola, G.; Rodrigo, M. A.; Panizza, M. Electrochim. Acta. 2018, 263, 1–7. DOI: https://doi.org/10.1016/j.electacta.2018.01.052. DOI: https://doi.org/10.1016/j.electacta.2018.01.052
Santos, J. E. L.; de Moura, D. C.; da Silva, D. R.; Panizza, M.; Martínez-Huitle, C. A. J. Solid State Electrochem. 2019, 23, 351–360. DOI: https://doi.org/10.1007/s10008-018-4134-5. DOI: https://doi.org/10.1007/s10008-018-4134-5
Rocha, J. H. B.; Gomes, M. M. S.; Santos, E. V. Dos; Moura, E. C. M. De; Silva, D. R. Da; Quiroz, M. A.; Martínez-Huitle, C. A. Electrochim. Acta. 2014, 140, 419–426. DOI: https://doi.org/10.1016/j.electacta.2014.06.030. DOI: https://doi.org/10.1016/j.electacta.2014.06.030
da Costa Soares, I. C.; da Silva, Á. R. L.; de Moura Santos, E. C. M.; dos Santos, E. V.; da Silva, D. R.; Martínez-Huitle, C. A. J. Solid State Electrochem. 2020, 24, 3245–3256. DOI: https://doi.org/10.1007/s10008-020-04813-w. DOI: https://doi.org/10.1007/s10008-020-04813-w
Araújo, C. K. C.; Oliveira, G. R.; Fernandes, N. S.; Zanta, C. L. P. S.; Castro, S. S. L.; da Silva, D. R.; Martínez-Huitle, C. A. Environ. Sci. Pollut. Res. 2014, 21, 9777–9784. DOI: https://doi.org/10.1007/s11356-014-2918-4. DOI: https://doi.org/10.1007/s11356-014-2918-4
Sirés, I.; Oturan, N.; Oturan, M. A. Water Res. 2010, 44, 3109–3120. DOI: https://doi.org/10.1016/j.watres.2010.03.005. DOI: https://doi.org/10.1016/j.watres.2010.03.005
Santos, V.; Morão, A.; Pacheco, M.; Ciríaco, L.; Lopes, A. J. Environ. Eng. Manage. 2008, 18, 193-204.
Rezaei, B.; Soleimany, R.; Ensafi, A. A.; Irannejad, N. J. Environ. Chem. Eng. 2018, 6, 7010–7020. DOI: https://doi.org/10.1016/j.jece.2018.11.008. DOI: https://doi.org/10.1016/j.jece.2018.11.008
Roberto, E. C.; Neto, A. D. O. W.; Martínez-Huitle, C. A.; Fonseca, J. L. C.; Dantas, T. N. D. C.; Gurgel, A. Prog Org Coat 2013, 76, 1308–1315. DOI: https://doi.org/10.1016/j.porgcoat.2013.04.002. DOI: https://doi.org/10.1016/j.porgcoat.2013.04.002
Manojlović, D.; Lelek, K.; Roglić, G.; Zherebtsov, D.; Avdin, V.; Buskina, K.; Sakthidharan, C.; Sapozhnikov, S.; Samodurova, M.; Zakirov, R.; Stanković, D. M. Inter. J. Environ. Sci. Technol. 2020, 17, 2455–2462. DOI: https://doi.org/10.1007/s13762-020-02654-8. DOI: https://doi.org/10.1007/s13762-020-02654-8
Moraes, P. B.; Pelegrino, R. R. L.; Bertazzoli, R. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2007, 42, 2131–2138. DOI: https://doi.org/10.1080/10934520701629591. DOI: https://doi.org/10.1080/10934520701629591
Bilotta, G. S.; Brazier, R. E. Water Res. 2008, 42, 2849–2861. DOI: https://doi.org/10.1016/J.WATRES.2008.03.018. DOI: https://doi.org/10.1016/j.watres.2008.03.018
Ganiyu, S. O.; Martínez-Huitle, C. A. Curr. Opin. Electrochem. 2020, 22, 211–220. DOI: https://doi.org/10.1016/j.coelec.2020.07.007. DOI: https://doi.org/10.1016/j.coelec.2020.07.007
Ganiyu, S. O.; Martínez-Huitle, C. A.; Rodrigo, M. A. Appl. Catal. B 2020, 270, 118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857. DOI: https://doi.org/10.1016/j.apcatb.2020.118857


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Maiara B. Ferreira, Elaine Cristina M. de Moura Santos, José H. Oliveira Nascimento, Felipe M. Fontes Galvão, Elisama V. dos Santos, José Eudes Lima Santos, Patricio J. Espinoza-Montero, Carlos Alberto Martínez-Huitle

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
