A Brief Review of the Role of Polymers in Different Lithium-Ion Conducting Electrolytes for LIBs

Authors

  • Gregorio Guzman Gonzalez Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.29356/jmcs.v67i4.1959

Keywords:

Lithium-ion, Lithium-ion batteries, polymer electrolytes, ion transport, solid electrolyte.

Abstract

Polymers have played a vital role in developing next-generation energy storage devices. In the progress of lithium-ion batteries (LIBs), polymers have been widely used in the preparation of electrolytes and electrode binders, in both cases, due to their unique intrinsic properties, such as high thermal, mechanical, and electrochemical resistance. However, the main limitation of this type of material is its poor ionic conductivity at room temperature, which depends on its structural properties and preparation techniques. In this review, the fundamental properties and ion transport mechanisms characteristic of different types of ion-conducting polymers, such as solvent-free polymer electrolytes (SPE), gel polymer electrolytes (GPE), and composite polymer electrolytes (CPE), are reported. A current overview of lithium-ion-based battery systems, which can be improved using ion-conducting polymers, is also presented.

 

Resumen. Los polímeros han tomado un papel fundamental en el desarrollo de dispositivos de almacenamiento de energía de última generación.  En el perfeccionamiento de baterías de ion litio LIBs, los polímeros han sido utilizados ampliamente en preparación de electrolitos y aglomerantes para electrodos, en ambos casos debido a sus propiedades intrínsecas especiales como alta resistencia térmica, mecánica y electroquímica. Sin embargo, la principal limitante de este tipo de materiales es su pobre de conductividad iónica a temperatura ambiente, la cual depende de sus propiedades estructurales y técnicas de preparación. En esta revisión son presentadas las propiedades fundamentales y mecanismos de transporte iónico característicos de los diferentes tipos de polímeros conductores de iones, como los electrolitos poliméricos sin disolventes (SPE), electrolitos poliméricos en gel (GPE) y electrolitos poliméricos compuestos (CPE). También se presenta un panorama actual de los sistemas de baterías basadas en iones litio, que pueden ser mejoradas de mediante el uso de polímeros conductores de iones.

Downloads

Download data is not yet available.

References

Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Prog. Nat. Sci. 2009, 19, 291–312. DOI: doi.org/10.1016/j.pnsc.2008.07.014. DOI: https://doi.org/10.1016/j.pnsc.2008.07.014

Meena, N.; Baharwani, V.; Sharma, D.; Sharma, A.; Choudhary, B.; Parmar, P.; Stephen, R. B. in: 2014 Power and energy systems: towards sustainable energy; 2014; 1–3. DOI: doi.org/10.1109/PESTSE.2014.6805253. DOI: https://doi.org/10.1109/PESTSE.2014.6805253

Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245–4270. DOI: doi.org/10.1021/cr020730k. DOI: https://doi.org/10.1021/cr020730k

Gao, J.; Zhao, Y.-S.; Shi, S.-Q.; Li, H. Chin. Phys. B. 2016, 25, 18211. DOI: doi.org/10.1088/1674-1056/25/1/018211. DOI: https://doi.org/10.1088/1674-1056/25/1/018211

Liu, C.; Neale, Z. G.; Cao, G. Mater. Today. 2016, 19, 109–123. DOI: doi.org/10.1016/j.mattod.2015.10.009. DOI: https://doi.org/10.1016/j.mattod.2015.10.009

Ebin, B.; Gürmen, S.; Lindbergh, G. Mater. Chem. Phys. 2012, 136, 424–430. DOI: doi.org/10.1016/j.matchemphys.2012.07.003. DOI: https://doi.org/10.1016/j.matchemphys.2012.07.003

Zhou, R.; Huang, J.; Lai, S.; Li, J.; Wang, F.; Chen, Z.; Lin, W.; Li, C.; Wang, J.; Zhao, J. Sustain Energy Fuels. 2018, 2, 1481–1490. DOI: doi.org/10.1039/C8SE00064F. DOI: https://doi.org/10.1039/C8SE00064F

Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem. 2014, 15, 1956–1969. DOI: doi.org/10.1002/cphc.201402175.

Ko, S.; Yamada, Y.; Yamada, A. Batteries Supercaps. 2020, 3, 910–916. DOI: doi.org/10.1002/batt.202000050. DOI: https://doi.org/10.1002/batt.202000050

Martínez-Cruz, M. A.; Yañez-Aulestia, A.; Ramos-Sánchez, G.; Oliver-Tolentino, M.; Vera, M.; Pfeiffer, H.; Ramírez-Rosales, D.; González, I. Dalton Trans. 2020, 49, 4549–4558. DOI: doi.org/10.1039/D0DT00273A. DOI: https://doi.org/10.1039/D0DT00273A

Borodin, O. Curr. Opin. Electrochem. 2019, 13, 86–93. DOI: doi.org/10.1016/j.coelec.2018.10.015.

Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy. Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408.

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2015, 3, 1–20. DOI: doi.org/10.1002/advs.201500213.

Hubble, D.; Brown, D. E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Energy Environ. Sci. 2022, 15, 550–578. DOI: doi.org/10.1039/D1EE01789F. DOI: https://doi.org/10.1039/D1EE01789F

Borodin, O. Curr. Opin. Electrochem. 2019, 13, 86–93. DOI: doi.org/10.1016/j.coelec.2018.10.015.

Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy. Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408.

Wu, J.; Wang, X.; Liu, Q.; Wang, S.; Zhou, D.; Kang, F.; Shanmukaraj, D.; Armand, M.; Rojo, T.; Li, B.; Wang, G. Nat. Commun. 2021, 12, 5746. DOI: doi.org/10.1038/s41467-021-26073-6. DOI: https://doi.org/10.1038/s41467-021-26073-6

Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. ChemSusChem. 2015, 8, 2154–2175. DOI: doi.org/10.1002/cssc.201500284. DOI: https://doi.org/10.1002/cssc.201500284

Chen, S.-P.; Lv, D.; Chen, J.; Zhang, Y.-H.; Shi, F.-N. Energy Fuels. 2022, 36, 1232–1251. DOI: doi.org/10.1021/acs.energyfuels.1c03757. DOI: https://doi.org/10.1021/acs.energyfuels.1c03757

Guzmán, G.; Vazquez-Arenas, J.; Ramos-Sánchez, G.; Bautista-Ramírez, M.; González, I. Electrochim. Acta. 2017, 247. DOI: doi.org/10.1016/j.electacta.2017.06.172. DOI: https://doi.org/10.1016/j.electacta.2017.06.172

Lee, U.; Xu, K.; Zhang, S. S.; Jow, T. R. MRS Online Proc. Libr. 2005, 835, K6.10. DOI: 10.1557/PROC-835-K6.10. DOI: https://doi.org/10.1557/PROC-835-K6.10

Xiao, A.; Yang, L.; Lucht, B. L. Electrochem. Solid-State Lett. 2007, 10, A241. DOI: doi.org/10.1149/1.2772084. DOI: https://doi.org/10.1149/1.2772084

Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A. Electrochem. Solid-State Lett. 2002, 5 (1), A26. DOI: doi.org/10.1149/1.1426042. DOI: https://doi.org/10.1149/1.1426042

Adenusi, H.; Chass, G. A.; Passerini, S.; Tian, K. V; Chen, G. Adv. Energy Mater. 2023, 13, 2203307. doi.org/10.1002/aenm.202203307. DOI: https://doi.org/10.1002/aenm.202203307

Qu, W.; Dorjpalam, E.; Rajagopalan, R.; Randall, C. A. ChemSusChem. 2014, 7, 1162–1169. DOI: doi.org/10.1002/cssc.201300858. DOI: https://doi.org/10.1002/cssc.201300858

Fu, C.; Ma, Y.; Lou, S.; Cui, C.; Xiang, L.; Zhao, W.; Zuo, P.; Wang, J.; Gao, Y.; Yin, G. J. Mater. Chem. A Mater. 2020, 8, 2066–2073. DOI: doi.org/10.1039/C9TA11341J. DOI: https://doi.org/10.1039/C9TA11341J

Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M. H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2018, 3, 2059–2067. DOI: doi.org/10.1021/acsenergylett.8b00935. DOI: https://doi.org/10.1021/acsenergylett.8b00935

Borodin, O.; Self, J.; Persson, K. A.; Wang, C.; Xu, K. Joule. 2020, 4, 69–100. DOI: doi.org/10.1016/j.joule.2019.12.007. DOI: https://doi.org/10.1016/j.joule.2019.12.007

Méry, A.; Rousselot, S.; Lepage, D.; Dollé, M. Materials. 2021. DOI: doi.org/10.3390/ma14143840.

Gancarz, P.; Zorębski, E.; Dzida, M. Electrochem. Commun. 2021, 130, 107107. DOI: 10.1016/j.elecom.2021.107107. DOI: https://doi.org/10.1016/j.elecom.2021.107107

Keller, M.; Varzi, A.; Passerini, S. Power Sources. 2018, 392, 206–225. DOI: doi.org/10.1016/j.jpowsour.2018.04.099.

Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. ACS Appl. Mater. Interfaces. 2020, 12, 7249–7256. DOI: doi.org/10.1021/acsami.9b20436. DOI: https://doi.org/10.1021/acsami.9b20436

Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; He, X. InfoMat. 2023, e12394. DOI: doi.org/10.1002/inf2.12394.

Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Chem. Mater. 2020, 32, 7237–7246. DOI: doi.org/10.1021/acs.chemmater.0c01489.

Hei, Z.; Wu, S.; Zheng, H.; Liu, H.; Duan, H. Solid State Ionics. 2022, 375, 115837. DOI: doi.org/10.1016/j.ssi.2021.115837. DOI: https://doi.org/10.1016/j.ssi.2021.115837

Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem.Phys. 2014, 16, 25628–25635. DOI: doi.org/10.1039/C4CP03499F. DOI: https://doi.org/10.1039/C4CP03499F

Elmore, T. C.; Seidler, E. M.; Ford, O. H.; Merrill, C. L.; Upadhyay, P. S.; Schneider, F. W.; Schaefer, L. J. Batteries. 2018. DOI: doi.org/10.3390/batteries4020028.

Han, J.; Yagi, S.; Takeuchi, H.; Nakayama, M.; Ichitsubo, T. J. Mater. Chem. A Mater. 2021, 9, 26401–26409. doi.org/10.1039/D1TA08115B. DOI: https://doi.org/10.1039/D1TA08115B

Solchenbach, S.; Hong, G.; Freiberg, A. T. S.; Jung, R.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A3304. DOI: doi.org/10.1149/2.0511814jes. DOI: https://doi.org/10.1149/2.0511814jes

Guzmán, G.; Nava, D.; Vazquez-Arenas, J.; Cardoso, J.; Alvarez-Ramirez, J. Solid State Ionics. 2018, 320, 45–54. DOI: doi.org/10.1016/j.ssi.2018.02.031. DOI: https://doi.org/10.1016/j.ssi.2018.02.031

Lee, M.-S.; Roev, V.; Jung, C.; Kim, J.-R.; Han, S.; Kang, H.-R.; Im, D.; Kim, I.-S. ChemistrySelect. 2018, 3, 11527–11534. DOI: doi.org/10.1002/slct.201800757. DOI: https://doi.org/10.1002/slct.201800757

Tan, P.; Yue, J.; Yu, Y.; Liu, B.; Liu, T.; Zheng, L.; He, L.; Zhang, X.; Suo, L.; Hong, L. J. Phys. Chem. C. 2021, 125, 11838–11847. DOI: doi.org/10.1021/acs.jpcc.1c01663. DOI: https://doi.org/10.1021/acs.jpcc.1c01663

Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Prog. Polym. Sci. 2018, 81, 114–143. DOI: doi.org/10.1016/j.progpolymsci.2017.12.004. DOI: https://doi.org/10.1016/j.progpolymsci.2017.12.004

Rosenwinkel, M. P.; Schönhoff, M. J. Electrochem. Soc. 2019, 166, A1977. DOI: doi.org/10.1149/2.0831910jes. DOI: https://doi.org/10.1149/2.0831910jes

Wohde, F.; Balabajew, M.; Roling, B. J. Electrochem. Soc. 2016, 163, A714. DOI: doi.org/10.1149/2.0811605jes. DOI: https://doi.org/10.1149/2.0811605jes

Fang, C.; Mistry, A.; Srinivasan, V.; Balsara, N. P.; Wang, R. JACS Au. 2023, 3, 306–315. DOI: doi.org/10.1021/jacsau.2c00590. DOI: https://doi.org/10.1021/jacsau.2c00590

Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer (Guildf), 1987, 28, 2324–2328. DOI: doi.org/10.1016/0032-3861(87)90394-6. DOI: https://doi.org/10.1016/0032-3861(87)90394-6

Parimalam, B. S.; Lucht, B. L. J. Electrochem. Soc. 2018, 165, A251–A255. DOI: doi.org/10.1149/2.0901802jes. DOI: https://doi.org/10.1149/2.0901802jes

Chen, L.; Wu, H.; Ai, X.; Cao, Y.; Chen, Z. Battery Energy. 2022, 1, 20210006. DOI: doi.org/10.1002/bte2.20210006. DOI: https://doi.org/10.1002/bte2.20210006

Borodin, O.; Han, S.-D.; Daubert, J. S.; Seo, D. M.; Yun, S.-H.; Henderson, W. A. J. Electrochem. Soc. 2015, 162, A501–A510. DOI: doi.org/10.1149/2.0891503jes. DOI: https://doi.org/10.1149/2.0891503jes

Horwitz, G.; Calvo, E. J.; Méndez De Leo, L. P.; De La Llave, E. Chem. Phys. 2020, 22, 16615–16623. DOI: doi.org/10.1039/d0cp02568b. DOI: https://doi.org/10.1039/D0CP02568B

Di Lecce, D.; Marangon, V.; Jung, H.-G.; Tominaga, Y.; Greenbaum, S.; Hassoun, J. Green Chem. 2022. DOI: doi.org/10.1039/D1GC03996B.

Alvarez-Tirado, M.; Castro, L.; Guzmán-González, G.; Guéguen, A.; Tomé, L. C.; Mecerreyes, D. Energy Mater. 2023, 3, 1–6.

Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J.-G.; Xu, W. Chem. 2018, 4, 1877–1892. DOI: doi.org/10.1016/j.chempr.2018.05.002. DOI: https://doi.org/10.1016/j.chempr.2018.05.002

Xu, D.; Wang, Z.; Xu, J.; Zhang, L.; Zhang, X. Chem. Commun. 2012, 48, 6948–6950. DOI: doi.org/10.1039/C2CC32844E. DOI: https://doi.org/10.1039/c2cc32844e

Moon, H.; Cho, S.-J.; Yu, D.-E.; Lee, S.-Y. Energy Environ. Mater. 2022. DOI: doi.org/10.1002/eem2.12383.

Scrosati, B.; Vincent, C. A. MRS Bull. 2000, 25, 28–30. DOI: doi.org/DOI: 10.1557/mrs2000.15. DOI: https://doi.org/10.1557/mrs2000.15

Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A Mater. 2015, 3, 19218–19253. DOI: doi.org/10.1039/C5TA03471J. DOI: https://doi.org/10.1039/C5TA03471J

Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F. Smart. Mater. Struct. 2011, 20, 124002. DOI: doi.org/10.1088/0964-1726/20/12/124002. DOI: https://doi.org/10.1088/0964-1726/20/12/124002

Ketkar, P. M.; Epps, T. H. I. I. I. Acc. Chem. Res. 2021, 54, 4342–4353. DOI: doi.org/10.1021/acs.accounts.1c00468. DOI: https://doi.org/10.1021/acs.accounts.1c00468

Solarajan, A. K.; Murugadoss, V.; Angaiah, S. Sci. Rep. 2017, 7, 45390. DOI: https://doi.org/10.1038/srep45390

Olmedo-Martínez, J.; Porcarelli, L.; Guzmán-González, G.; Calafel, M. I.; Forsyth, M.; Mecerreyes, D.; Müller, A. ACS Appl. Polym. Mater. 2021, 3, 6326–6337. DOI: doi.org/10.1021/acsapm.1c01093. DOI: https://doi.org/10.1021/acsapm.1c01093

Long, L.; Wang, S.; Xiao, M.; Meng, Y. J. Mater. Chem. A Mater. 2016, 4, 10038–10069. DOI: doi.org/10.1039/C6TA02621D. DOI: https://doi.org/10.1039/C6TA02621D

Voropaeva, D. Y.; Novikova, S. A.; Yaroslavtsev, A. B. Russ. Chem. Rev. 2020, 89, 1132–1155. DOI: https://doi.org/10.1070/RCR4956

Guzmán, G.; Nava, D. P.; Vazquez-Arenas, J.; Cardoso, J. Macromol. Symp. 2017, 374, 1600136. DOI: doi.org/10.1002/masy.201600136. DOI: https://doi.org/10.1002/masy.201600136

Strauss, E.; Menkin, S.; Golodnitsky, D. J. Solid State Electrochem. 2017, 21, 1879–1905. DOI: doi.org/10.1007/s10008-017-3638-8. DOI: https://doi.org/10.1007/s10008-017-3638-8

Savoie, B. M.; Webb, M. A.; Miller, T. F. Enhancing. J. Phys. Chem. Lett. 2017, 8, 641–646. DOI: doi.org/10.1021/acs.jpclett.6b02662. DOI: https://doi.org/10.1021/acs.jpclett.6b02662

Zhang, Z.; Zhang, P.; Liu, Z.; Du, B.; Peng, Z. ACS Appl. Mater. Interfaces. 2020, 12, 11635–11642. DOI: doi.org/10.1021/acsami.9b21655. DOI: https://doi.org/10.1021/acsami.9b21655

Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Angew. Chem. Int. Ed. Engl. 2016, 55, 2521–2525. DOI: doi.org/10.1002/anie.201509299. DOI: https://doi.org/10.1002/anie.201509299

Lin, Y.-Y.; Chen, Y.-M.; Hou, S.-S.; Jan, J.-S.; Lee, Y.-L.; Teng, H. J. Mater. Chem. A Mater. 2017, 5, 17476–17481. DOI: doi.org/10.1039/C7TA04886F. DOI: https://doi.org/10.1039/C7TA04886F

Piszcz, M.; Garcia-Calvo, O.; Oteo, U.; Lopez del Amo, J. M.; Li, C.; Rodriguez-Martinez, L. M.; Youcef, H. Ben; Lago, N.; Thielen, J.; Armand, M. Electrochim. Acta. 2017, 255, 48–54. DOI: doi.org/10.1016/j.electacta.2017.09.139. DOI: https://doi.org/10.1016/j.electacta.2017.09.139

Thomas, K. E.; Sloop, S. E.; Kerr, J. B.; Newman, J. Power Sources. 2000, 89, 132–138. DOI: doi.org/10.1016/S0378-7753(00)00420-1. DOI: https://doi.org/10.1016/S0378-7753(00)00420-1

Alvarez Tirado, M.; Castro, L.; Guzmán-González, G.; Porcarelli, L.; Mecerreyes, D. ACS Appl. Energy Mater. 2021, 4, 295–302. DOI: doi.org/10.1021/acsaem.0c02255.

Shobukawa, H.; Tokuda, H.; Tabata, S.-I.; Watanabe, M. Electrochim. Acta. 2004, 50, 305–309. DOI: doi.org/10.1016/j.electacta.2004.01.096. DOI: https://doi.org/10.1016/j.electacta.2004.01.096

Feng, S.; Shi, D.; Liu, F.; Zheng, L.; Nie, J.; Feng, W.; Huang, X.; Armand, M.; Zhou, Z. Electrochim. Acta. 2013, 93, 254–263. DOI: doi.org/10.1016/j.electacta.2013.01.119. DOI: https://doi.org/10.1016/j.electacta.2013.01.119

Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. J. Mater. Chem. A Mater. 2020, 8, 1557–1577. DOI: doi.org/10.1039/C9TA11178F. DOI: https://doi.org/10.1039/C9TA11178F

Guzmán-González, G.; Ávila-Paredes, H. J.; Rivera, E.; González, I. ACS Appl. Mater. Interfaces. 2018, 10. DOI: doi.org/10.1021/acsami.8b02519. DOI: https://doi.org/10.1021/acsami.8b02519

Guzmán-González, G.; Ramos-Sánchez, G.; Camacho-Forero, L. E.; González, I. J. Phys. Chem. C. 2019, 123. DOI: doi.org/10.1021/acs.jpcc.9b02945. DOI: https://doi.org/10.1021/acs.jpcc.9b02945

Guzmán-González, G.; Vauthier, S.; Alvarez-Tirado, M.; Cotte, S.; Castro, L.; Guéguen, A.; Casado, N.; Mecerreyes, D. Angew. Chem. Int. Ed. 2022, 61, e202114024. DOI: doi.org/10.1002/anie.202114024. DOI: https://doi.org/10.1002/anie.202114024

Itoh, T.; Mitsuda, Y.; Ebina, T.; Uno, T.; Kubo, M. Power Sources. 2009, 189, 531–535. DOI: doi.org/10.1016/j.jpowsour.2008.10.113. DOI: https://doi.org/10.1016/j.jpowsour.2008.10.113

Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Green Energy Environ. 2016, 1, 18–42. DOI: doi.org/10.1016/j.gee.2016.04.006. DOI: https://doi.org/10.1016/j.gee.2016.04.006

Xu, W.; Williams, M. D.; Angell, C. A. Chem. Mater. 2002, 14, 401–409. DOI: doi.org/10.1021/cm010699n. DOI: https://doi.org/10.1021/cm010699n

Shim, J.; Lee, J. S.; Lee, J. H.; Kim, H. J.; Lee, J.-C. ACS Appl. Mater. Interfaces. 2016, 8, 27740–27752. DOI: doi.org/10.1021/acsami.6b09601. DOI: https://doi.org/10.1021/acsami.6b09601

Choudhury, S.; Tu, Z.; Nijamudheen, A.; Zachman, M. J.; Stalin, S.; Deng, Y.; Zhao, Q.; Vu, D.; Kourkoutis, L. F.; Mendoza-Cortes, J. L.; Archer, L. A. Nat. Commun. 2019, 10, 1–11. DOI: doi.org/10.1038/s41467-019-11015-0. DOI: https://doi.org/10.1038/s41467-019-11015-0

Tsao, C.-H.; Hsu, C.-H.; Kuo, P.-L. Electrochim. Acta. 2016, 196, 41–47. DOI: doi.org/10.1016/j.electacta.2016.02.154. DOI: https://doi.org/10.1016/j.electacta.2016.02.154

Fongy, C.; Jouanneau, S.; Guyomard, D.; Badot, J. C.; Lestriez, B. J. Electrochem. Soc. 2010, 157, A1347. DOI: doi.org/10.1149/1.3497353. DOI: https://doi.org/10.1149/1.3497353

Orikasa, Y.; Gogyo, Y.; Yamashige, H.; Katayama, M.; Chen, K.; Mori, T.; Yamamoto, K.; Masese, T.; Inada, Y.; Ohta, T.; Siroma, Z.; Kato, S.; Kinoshita, H.; Arai, H.; Ogumi, Z.; Uchimoto, Y. Sci. Rep. 2016, 6, 26382. DOI: doi.org/10.1038/srep26382. DOI: https://doi.org/10.1038/srep26382

Guy, D.; Lestriez, B.; Bouchet, R.; Guyomard, D. J. Electrochem. Soc. 2006, 153, A679. DOI: doi.org/10.1149/1.2168049. DOI: https://doi.org/10.1149/1.2168049

Yang, H.; Wu, N. Energy Sci. Eng. 2022, 10, 1643–1671. DOI: doi.org/10.1002/ese3.1163. DOI: https://doi.org/10.1002/ese3.1163

Liu, X.; Fu, J.; Zhang, C. Nanoscale Res. Lett. 2016, 11, 551. DOI: doi.org/10.1186/s11671-016-1768-z.

Yang, S.; Liang, Q.; Wu, H.; Pi, J.; Wang, Z.; Luo, Y.; Liu, Y.; Long, Z.; Zhou, D.; Wen, Y.; Wang, Q.; Guo, J.; Qiu, J. J. Phys. Chem. Lett. 2022, 13, 4981–4987. DOI: doi.org/10.1021/acs.jpclett.2c01052. DOI: https://doi.org/10.1021/acs.jpclett.2c01052

Xie, W.; Cao, J.; Li, P.; Fan, M.; Xu, S.; Du, J.; Zhang, J. Mater. Des. 2022, 220, 110860. DOI: doi.org/10.1016/j.matdes.2022.110860. DOI: https://doi.org/10.1016/j.matdes.2022.110860

Mathieson, A.; Feldmann, S.; De Volder, M. JACS Au. 2022, 2, 1313–1317. DOI: doi.org/10.1021/jacsau.2c00212. DOI: https://doi.org/10.1021/jacsau.2c00212

Sastre, J.; Priebe, A.; Döbeli, M.; Michler, J.; Tiwari, A. N.; Romanyuk, Y. E. Adv. Mater. Interfaces. 2020, 7, 2000425. DOI: doi.org/10.1002/admi.202000425. DOI: https://doi.org/10.1002/admi.202000425

Indu, M. S.; Alexander, G. V; Sreejith, O. V; Abraham, S. E.; Murugan, R. Mater. Today Energy. 2021, 21, 100804. DOI: doi.org/10.1016/j.mtener.2021.100804. DOI: https://doi.org/10.1016/j.mtener.2021.100804

Kato, A.; Yamamoto, M.; Utsuno, F.; Higuchi, H.; Takahashi, M. Commun. Mater. 2021, 2, 112. DOI: doi.org/10.1038/s43246-021-00216-0. DOI: https://doi.org/10.1038/s43246-021-00216-0

Zhou, J.; Chen, P.; Wang, W.; Zhang, X. Chem. Eng. J. 2022, 446, 137041. DOI: doi.org/10.1016/j.cej.2022.137041. DOI: https://doi.org/10.1016/j.cej.2022.137041

Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140–162. DOI: doi.org/10.1021/acs.chemrev.5b00563. DOI: https://doi.org/10.1021/acs.chemrev.5b00563

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Nat. Mater. 2019, 18, 1278–1291. DOI: doi.org/10.1038/s41563-019-0431-3. DOI: https://doi.org/10.1038/s41563-019-0431-3

Zhao, S.; Jiang, W.; Zhu, X.; Ling, M.; Liang, C. Sustainable Mater. Technol. 2022, 33, e00491. DOI: doi.org/10.1016/j.susmat.2022.e00491 DOI: https://doi.org/10.1016/j.susmat.2022.e00491

Moganty, S. S.; Jayaprakash, N.; Nugent, J. L.; Shen, J.; Archer, L. A. Angew. Chem. Int. Ed. 2010, 49, 9158–9161. DOI: doi.org/10.1002/anie.201004551. DOI: https://doi.org/10.1002/anie.201004551

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Chem. 2019, 5, 2326–2352. DOI: doi.org/10.1016/j.chempr.2019.05.009. DOI: https://doi.org/10.1016/j.chempr.2019.05.009

Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G. J. Energy Chem. 2019, 37, 126–142. DOI: doi.org/10.1016/j.jechem.2018.12.013. DOI: https://doi.org/10.1016/j.jechem.2018.12.013

Fu, S.; Zuo, L.-L.; Zhou, P.-S.; Liu, X.-J.; Ma, Q.; Chen, M.-J.; Yue, J.-P.; Wu, X.-W.; Deng, Q. Mater. Chem. Front. 2021, 5, 5211–5232. DOI: doi.org/10.1039/D1QM00096A. DOI: https://doi.org/10.1039/D1QM00096A

Nava, D. P.; Guzmán, G.; Vazquez-Arenas, J.; Cardoso, J.; Gomez, B.; Gonzalez, I. Solid State Ionics. 2016, 290. DOI: doi.org/10.1016/j.ssi.2016.03.020. DOI: https://doi.org/10.1016/j.ssi.2016.03.020

Alvarez Tirado, M.; Castro, L.; Guzmán-González, G.; Porcarelli, L.; Mecerreyes, D. Single-ACS Appl. Energy Mater. 2021, 4, 295–302. DOI: doi.org/10.1021/acsaem.0c02255. DOI: https://doi.org/10.1021/acsaem.0c02255

Baskoro, F.; Wong, H. Q.; Yen, H.-J. ACS Appl. Energy Mater. 2019, 2, 3937–3971. DOI: doi.org/10.1021/acsaem.9b00295. DOI: https://doi.org/10.1021/acsaem.9b00295

Susan, Md. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. J. Am. Chem. Soc. 2005, 127, 4976–4983. DOI: doi.org/10.1021/ja045155b. DOI: https://doi.org/10.1021/ja045155b

Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem. 2014, 15, 1956–1969. DOI: doi.org/10.1002/cphc.201402175. DOI: https://doi.org/10.1002/cphc.201402175

Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408. DOI: https://doi.org/10.1002/aenm.201570018

Abbas, Z.; Labbez, C.; Nordholm, S.; Ahlberg, E. J. Phys. Chem. C. 2008, 112, 5715–5723. DOI: doi.org/10.1021/jp709667u. DOI: https://doi.org/10.1021/jp709667u

Pacchioni, G. Eur. J. Inorg. Chem. 2019, 2019, 751–761. DOI: doi.org/10.1002/ejic.201801314. DOI: https://doi.org/10.1002/ejic.201801314

Cheng, S.; Xie, S.-J.; Carrillo, J.-M. Y.; Carroll, B.; Martin, H.; Cao, P.-F.; Dadmun, M. D.; Sumpter, B. G.; Novikov, V. N.; Schweizer, K. S.; Sokolov, A. P. ACS Nano. 2017, 11, 752–759. DOI: doi.org/10.1021/acsnano.6b07172. DOI: https://doi.org/10.1021/acsnano.6b07172

Ma, C.; Zhang, J.; Xu, M.; Xia, Q.; Liu, J.; Zhao, S.; Chen, L.; Pan, A.; Ivey, D. G.; Wei, W. Power Sources. 2016, 317, 103–111. DOI: doi.org/10.1016/j.jpowsour.2016.03.097. DOI: https://doi.org/10.1016/j.jpowsour.2016.03.097

Bantz, C.; Koshkina, O.; Lang, T.; Galla, H.-J.; Kirkpatrick, C. J.; Stauber, R. H.; Maskos, M. Beilstein J. Nanotechnol. 2014, 5, 1774–1786. DOI: doi.org/10.3762/bjnano.5.188. DOI: https://doi.org/10.3762/bjnano.5.188

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature. 1998, 394, 456–458. DOI: doi.org/10.1038/28818. DOI: https://doi.org/10.1038/28818

Shim, J.; Kim, D.-G.; Kim, H. J.; Lee, J. H.; Lee, J.-C. ACS Appl. Mater. Interfaces. 2015, 7, 7690–7701. DOI: doi.org/10.1021/acsami.5b00618. DOI: https://doi.org/10.1021/acsami.5b00618

Manuel Stephan, A.; Nahm, K. S. Polymer (Guildf). 2006, 47, 5952–5964. DOI: doi.org/10.1016/j.polymer.2006.05.069. DOI: https://doi.org/10.1016/j.polymer.2006.05.069

Keller, M.; Varzi, A.; Passerini, S. Power Sources. 2018, 392, 206–225. DOI: doi.org/10.1016/j.jpowsour.2018.04.099. DOI: https://doi.org/10.1016/j.jpowsour.2018.04.099

Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Chem. Mater. 2020, 32, 7237–7246. DOI: doi.org/10.1021/acs.chemmater.0c01489. DOI: https://doi.org/10.1021/acs.chemmater.0c01489

Yao, Y. University of Wollongong, thesis, 2008. https://ro.uow.edu.au/theses/88/ , accessed in July 2023.

Plylahan, N.; Kerner, M.; Lim, D.-H.; Matic, A.; Johansson, P. Electrochim. Acta. 2016, 216, 24–34. DOI: doi.org/10.1016/j.electacta.2016.08.025. DOI: https://doi.org/10.1016/j.electacta.2016.08.025

×

Downloads

Published

2023-11-07

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.

Loading...