Removal of Direct dyes with Alginic acid

Authors

  • Virginia-Francisca Marañón-Ruiz Centro Universitario de los Lagos, Universidad de Guadalajara

DOI:

https://doi.org/10.29356/jmcs.v59i3.38

Keywords:

Alginic acid, direct dyes, electrostatic interactions, hydrogen bonding, hydrophobic interactions

Abstract

The interaction of Alginic acid with three direct dyes (Direct blue 1, Direct red 81, and Direct black 22) was studied. It was found that as a result of this interaction formation of adducts after addition of calcium ion, facilitates their removal from aqueous solution. Our results suggest a relationship among physico-chemical properties of each dye and its removal efficiency. The main mechanisms involved in dye removal are electrostatic interactions, hydrogen bonding and hydrophobic interactions.

Downloads

Download data is not yet available.

Author Biography

Virginia-Francisca Marañón-Ruiz, Centro Universitario de los Lagos, Universidad de Guadalajara

Departamento de ciencias de la tierra y de la vida

References

Teng, T.T., Low, L.W. in: Advances in Water Treatment and Pollution. Sharma, S. K. and Sanghi, R. Eds. Springer, Dordrecht, 2012, 65-93.

McMullan, G.; Meehan, C.; Conneely, A.; Kirby, N. Appl. Microbiol. Biotechnol. 2001, 56, 81-87. DOI: https://doi.org/10.1007/s002530000587

Van der Zee, F.P.; Lettinga, G.; Field, J.A. Chemosphere 2001, 44, 1169-1176. DOI: https://doi.org/10.1016/S0045-6535(00)00270-8

Junnarkar, N.; Srinivas-Murty, D.; Bhatt, N.S.; Madamwar, D. World J. Microb. & Biot. 2006, 22, 163-168. DOI: https://doi.org/10.1007/s11274-005-9014-3

Mondal, P. K., Chauhan, B. in: Environmental Chemistry for a Sustainable World, Volume 2: Remediation of Air and Water Pollution. Lichtfouse, E., Schwarzbauer, J. and Robert D. Ed; Springer, Dordrecht, 2012, 255-275.

Tosik, R.; Wiktorowski, S. Sci. Eng. 2001, 23, 295-302. DOI: https://doi.org/10.1080/01919510108962012

Shu, H.Y.; Chang, M.C. J. Hazard. Mater. 2005, 121, 127-133. DOI: https://doi.org/10.1016/j.jhazmat.2005.01.020

Salama, T.M.; Ali, I.O.; Hanafya, A.I.; Al-Meligy, W.M. Mater. Chem. Phys. 2009, 113, 159-165. DOI: https://doi.org/10.1016/j.matchemphys.2008.06.075

Isaev A.B.; Aliev, Z.M.; Adamadzieva, N.A. Russ. J. Appl. Chem. 2012, 85, 765-769. DOI: https://doi.org/10.1134/S107042721205014X

Ong, S.A.; Min, O.M.; Ho, L.N.; Wong, Y.S. Water Air Soil Pollut. 2012, 223, 5483–5493. DOI: https://doi.org/10.1007/s11270-012-1295-1

Genuino, H.C.; Hamal, D.B.; Fu, Y.J.; Suib, S.L. J. Phys. Chem. C 2012, 116, 14040-14051. DOI: https://doi.org/10.1021/jp3040192

Pereira, L.; Alves, M. In: Environmental Protection Strategies for Sustainable Development, Strategies for Sustainability. Malik, A.; Grohmann, E. Ed; Springer, Dordrecht, 2012, 111-162. DOI: https://doi.org/10.1007/978-94-007-1591-2_4

Ong, S.A.; Min, O.M.; Ho, L.N.; Wong, Y.S. Environ. Sci. Pollut. Res. 2013, 20, 3405–3413. DOI: https://doi.org/10.1007/s11356-012-1286-1

Yang, Z.; Lu, X.; Gao, B.; Wang, Y.; Yue, Q.; Chen, T. J. Mater. Sci. 2014, 49, 4962–4972. DOI: https://doi.org/10.1007/s10853-014-8197-0

Socha, A.; Sochocka, E.; Podsiad?y, R. Soko?owska, J. Color. Technol. 2006, 122, 207–212. DOI: https://doi.org/10.1111/j.1478-4408.2006.00027.x

Aquino, J.M.; Rodrigo, M.A.; Rocha-Filhoa, R.C.; Sáez, C.; Cañizares, P. Chem. Eng. J. 2012, 184, 221-227. DOI: https://doi.org/10.1016/j.cej.2012.01.044

Horng, J.Y.; Huang, S.D. Environ. Sci. Technol. 1993, 27, 1169-1175. DOI: https://doi.org/10.1021/es00043a017

Yilmaz, E.; Memon, S.; Yilmaz, M. J. Hazard. Mater. 2010, 174, 592-597. DOI: https://doi.org/10.1016/j.jhazmat.2009.09.093

Arslan, M.; Sayin, S.; Yilmaz, M. Water Air Soil. Pollut. 2013, 224, 1527-1536. DOI: https://doi.org/10.1007/s11270-013-1527-z

Yilmaz-Ozmen, E.; Erdemir, S.; Yilmaz, M.; Bahadir, M. Clean 2007, 35, 612-616. DOI: https://doi.org/10.1002/clen.200700033

Akceylan, E.; Bahadir, M.; Y?lmaz, M. J. Hazard. Mater. 2009, 162, 960-966. DOI: https://doi.org/10.1016/j.jhazmat.2008.05.127

Kazakova, E.K.; Morozova, J.E.; Mironova, D.A.; Konovalov, A.I. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 467–472. DOI: https://doi.org/10.1007/s10847-011-0075-7

Kamboh, M.A.; Akoz, E.; Memon, S.; Yilmaz, M. Water Air Soil Pollut. 2013, 224,1424-1433. DOI: https://doi.org/10.1007/s11270-012-1424-x

Senan, R.C.; Abraham, T.E. Biodegradation 2004, 15, 275–280. DOI: https://doi.org/10.1023/B:BIOD.0000043000.18427.0a

Parikh, A.; Madamwar, D. Biotechnol. Lett. 2005, 27, 323-326. DOI: https://doi.org/10.1007/s10529-005-0691-7

Arun-Prasad, A.S.; Satyanarayana, V.S.V.; Bhaskara-Rao, K.V. J. Hazard. Mater. 2013, 262, 674-684. DOI: https://doi.org/10.1016/j.jhazmat.2013.09.011

Reyes, P.; Pickard, M.A.; Vazquez-Duhalt, R. Biotechnol. Lett. 1999, 21, 875-880. DOI: https://doi.org/10.1023/A:1005502906890

Liu, W.; Chao, Y.; Yang, X.; Bao, H.; Qian, S. J. Ind. Microbiol. Biotechnol. 2004, 31, 127–132. DOI: https://doi.org/10.1007/s10295-004-0123-z

Ramsay, J.A.; Mok, M.H.W.; Luu, Y.S.; Savage, M. Chemosphere 2005, 61, 956-964. DOI: https://doi.org/10.1016/j.chemosphere.2005.03.070

Guerrero, E.; Aburto, P.; Terrés, E.; Villegas, O.; González, E.; Zayas, T.; Hernández, F.; Torres, E. J. Porous Mater. 2013, 20, 387-396. DOI: https://doi.org/10.1007/s10934-012-9608-8

Arami, M.; Limaee, N.Y.; Mahmoodia, N.M.; Tabrizi, N.S.J. Hazard. Mater B 2006, 135, 171-179. DOI: https://doi.org/10.1016/j.jhazmat.2005.11.044

Aravindhan, R.; Fathima, N. N.; Rao, J. R.; Nair, B. U. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 232-238. DOI: https://doi.org/10.1016/j.colsurfa.2006.11.045

Ferrero, F.; Periolatto, M. Clean Techn. Environ. Policy 2012, 14, 487-494. DOI: https://doi.org/10.1007/s10098-011-0442-5

Sanghi, R.; Bhattacharya, B. Color. Technol. 2002, 118, 256-269. DOI: https://doi.org/10.1111/j.1478-4408.2002.tb00109.x

Annadurai, G. Bioprocess Biosyst. Eng. 2000, 23, 451-455. DOI: https://doi.org/10.1007/s004499900164

Pal, M.K.; Mandal, N. Biopolymers 1990, 29, 1541-1548. DOI: https://doi.org/10.1002/bip.360291205

Blackburn, R.S. Environ. Sci. Technol. 2004, 38, 4905-4909. DOI: https://doi.org/10.1021/es049972n

Nasr, M.F.; El-Ola, S.M.A.; Ramadan, A.; Hashem, A.I. Polym-Plast. Technol. Eng. 2006, 45, 335-340. DOI: https://doi.org/10.1080/03602550600553176

Lozano-Alvarez, J. A.; Jáuregui-Rincón, J.; Mendoza-Díaz, G.; Rodríguez-Vázquez, R.; Frausto-Reyes, C. J. Mex. Chem. Soc. 2009, 53, 59-70.

Singh, V.; Malviya, T.; Sanghi, R. In: Advances in Water Treatment and Pollution Prevention. Sharma, S. K.; Sanghi, R. Eds. Springer, Dordrecht, 2012, 377-403. DOI: https://doi.org/10.1007/978-94-007-4204-8_13

Braccini, I.; Perez, S. Biomacromolecules 2001, 2, 1089-1096. DOI: https://doi.org/10.1021/bm010008g

Donati, I.; Holtan, S.; Mørch, Y.A.; Borgogna, M.; Dentini, M.; Skjåk-Bræk, M. Biomacromolecules 2005, 6, 1031-1040. DOI: https://doi.org/10.1021/bm049306e

Oakes, J.; Dixon, S. Rev. Prog. Color. 2004, 34, 110-128. DOI: https://doi.org/10.1111/j.1478-4408.2004.tb00156.x

Maurstad, G.; Danielsen, S.; Stokke, B.T. J. Phys. chem. B 2003, 107, 8172-8180. DOI: https://doi.org/10.1021/jp0271965

Zimm, B.H.; Bragg, J.K. J. Chem. Phys. 1959, 3, 526-535. DOI: https://doi.org/10.1063/1.1730390

Schwarz, G.; Balthasar, W. Eur. J. Biochem. 1970, 12, 461-467. DOI: https://doi.org/10.1111/j.1432-1033.1970.tb00873.x

Satake, I.; Yang, J.T. Biopolymers 1976, 15, 2263-2275. DOI: https://doi.org/10.1002/bip.1976.360151113

Ja?uregui-Rinco?n, J.; Lozano-Alvarez, J.A.; Medina-Rami?rez, I. In: Elnashar, M. Ed. Biotechnology of Biopolymers, Intech, Croacia, 2011, 165-190.

Lindstrom, T.; Christer, S. J. colloid. Interf. Sci. 1976, 55, 69-72. DOI: https://doi.org/10.1016/0021-9797(76)90009-6

Singh, R.P.; Tripathy, T.; Karmakar, G.P.; Rath, S.K.; Karmakar, N.C.; Pandey, S.R.; Kannan, K.; Jain, S.K.; Lan, N.T. Curr. Sci. 2000, 78, 798-803.

Retes-Pruneda, J.L.; Davila-Vazquez, G.; Medina-Ramírez, I.; Chavez-Vela, N.A.; Lozano-Alvarez, J.A.; Alatriste-Mondragon, F.; Jauregui-Rincon, J. Environ. Technol. 2014, 35, 1773-1784. DOI: https://doi.org/10.1080/09593330.2014.882960

Abbott, L.C.; Batchelor, S.N.; Jansen, L.; Oakes, J.; Lindsay-Smith J.R., Moore, J,N, New. J. Chem. 2004, 28, 815-821. DOI: https://doi.org/10.1039/b401055h

Monahan, A.R.; Blossey, D.F. J. Phys. Chem. 1971, 75, 1227-1233. DOI: https://doi.org/10.1021/j100679a009

Reeves, R.L.; Maggio, M.S.; Harkaway, S.A.A. J. Phys. Chem. 1979, 83, 2359-2368. DOI: https://doi.org/10.1021/j100481a011

Hamada, K.; Mitshuishi, M.; Ohira, M.; Miyazaki, K. J. Phys. Chem. 1993, 97, 4926-4929. DOI: https://doi.org/10.1021/j100121a010

Tiddy, G.J.T.; Mateer, D.L.; Ormedrod, A.P.; Harrison, W.J.; Edwards, D.J. Langmuir 1995, 11, 390-393. DOI: https://doi.org/10.1021/la00002a002

Ferus-Camelo, M.; Greaves, A.J. Color. Technol. 2002, 118, 15-19. DOI: https://doi.org/10.1111/j.1478-4408.2002.tb00131.x

Abbot, L.C.; Batchelor, S.N.; Oakes, J.; Lindsay-Smith, J.R., Moore, J.N. J. Phys. Chem. B 2004, 108, 13726-13735. DOI: https://doi.org/10.1021/jp0485542

Yoshida, Z.I.; Osawa, E.; Oda, R. J. Phys. Chem. 1964, 68, 2895-2898. DOI: https://doi.org/10.1021/j100792a025

Abbott, L.C.; Batchelor, S.N.; Oakes, J.; Lindsay-Smith, J.R.; Moore, J.N. J. Phys. Chem. A 2004, 108, 10208-10218. DOI: https://doi.org/10.1021/jp047234f

Abbott, L.A.; Batchelor, S.N.; Oakes, J.; Gilbert, B.C.; Whitwood, A.C.; Lindsay-Smith, J.R.; Moore, J.N. J. Phys. Chem. A 2005, 109, 2894-2905. DOI: https://doi.org/10.1021/jp045216s

Silverstein, R.; Milton, R. Spectrometric Identification of Organic Compounds. Fifth ed. John Wiley & sons, USA, 1991, 127.

Armstrong, D.R.; Clarkson, J.; Smith, W.E. J. Phys. Chem. 1995, 99, 17825-17831. DOI: https://doi.org/10.1021/j100051a005

Biswas, N.; Umapathy, S. J. Phys. Chem. A 2000, 104, 2734-2745. DOI: https://doi.org/10.1021/jp9929263

Core, R. T. R: A language and Environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2013, http: //www.R-project.org.

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...