A Brief Review of the Role of Polymers in Different Lithium-Ion Conducting Electrolytes for LIBs
DOI:
https://doi.org/10.29356/jmcs.v67i4.1959Keywords:
Lithium-ion, Lithium-ion batteries, polymer electrolytes, ion transport, solid electrolyte.Abstract
Polymers have played a vital role in developing next-generation energy storage devices. In the progress of lithium-ion batteries (LIBs), polymers have been widely used in the preparation of electrolytes and electrode binders, in both cases, due to their unique intrinsic properties, such as high thermal, mechanical, and electrochemical resistance. However, the main limitation of this type of material is its poor ionic conductivity at room temperature, which depends on its structural properties and preparation techniques. In this review, the fundamental properties and ion transport mechanisms characteristic of different types of ion-conducting polymers, such as solvent-free polymer electrolytes (SPE), gel polymer electrolytes (GPE), and composite polymer electrolytes (CPE), are reported. A current overview of lithium-ion-based battery systems, which can be improved using ion-conducting polymers, is also presented.
Resumen. Los polímeros han tomado un papel fundamental en el desarrollo de dispositivos de almacenamiento de energía de última generación. En el perfeccionamiento de baterías de ion litio LIBs, los polímeros han sido utilizados ampliamente en preparación de electrolitos y aglomerantes para electrodos, en ambos casos debido a sus propiedades intrínsecas especiales como alta resistencia térmica, mecánica y electroquímica. Sin embargo, la principal limitante de este tipo de materiales es su pobre de conductividad iónica a temperatura ambiente, la cual depende de sus propiedades estructurales y técnicas de preparación. En esta revisión son presentadas las propiedades fundamentales y mecanismos de transporte iónico característicos de los diferentes tipos de polímeros conductores de iones, como los electrolitos poliméricos sin disolventes (SPE), electrolitos poliméricos en gel (GPE) y electrolitos poliméricos compuestos (CPE). También se presenta un panorama actual de los sistemas de baterías basadas en iones litio, que pueden ser mejoradas de mediante el uso de polímeros conductores de iones.
Downloads
References
Chen, H.; Cong, T. N.; Yang, W.; Tan, C.; Li, Y.; Ding, Y. Prog. Nat. Sci. 2009, 19, 291–312. DOI: doi.org/10.1016/j.pnsc.2008.07.014. DOI: https://doi.org/10.1016/j.pnsc.2008.07.014
Meena, N.; Baharwani, V.; Sharma, D.; Sharma, A.; Choudhary, B.; Parmar, P.; Stephen, R. B. in: 2014 Power and energy systems: towards sustainable energy; 2014; 1–3. DOI: doi.org/10.1109/PESTSE.2014.6805253. DOI: https://doi.org/10.1109/PESTSE.2014.6805253
Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245–4270. DOI: doi.org/10.1021/cr020730k. DOI: https://doi.org/10.1021/cr020730k
Gao, J.; Zhao, Y.-S.; Shi, S.-Q.; Li, H. Chin. Phys. B. 2016, 25, 18211. DOI: doi.org/10.1088/1674-1056/25/1/018211. DOI: https://doi.org/10.1088/1674-1056/25/1/018211
Liu, C.; Neale, Z. G.; Cao, G. Mater. Today. 2016, 19, 109–123. DOI: doi.org/10.1016/j.mattod.2015.10.009. DOI: https://doi.org/10.1016/j.mattod.2015.10.009
Ebin, B.; Gürmen, S.; Lindbergh, G. Mater. Chem. Phys. 2012, 136, 424–430. DOI: doi.org/10.1016/j.matchemphys.2012.07.003. DOI: https://doi.org/10.1016/j.matchemphys.2012.07.003
Zhou, R.; Huang, J.; Lai, S.; Li, J.; Wang, F.; Chen, Z.; Lin, W.; Li, C.; Wang, J.; Zhao, J. Sustain Energy Fuels. 2018, 2, 1481–1490. DOI: doi.org/10.1039/C8SE00064F. DOI: https://doi.org/10.1039/C8SE00064F
Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem. 2014, 15, 1956–1969. DOI: doi.org/10.1002/cphc.201402175.
Ko, S.; Yamada, Y.; Yamada, A. Batteries Supercaps. 2020, 3, 910–916. DOI: doi.org/10.1002/batt.202000050. DOI: https://doi.org/10.1002/batt.202000050
Martínez-Cruz, M. A.; Yañez-Aulestia, A.; Ramos-Sánchez, G.; Oliver-Tolentino, M.; Vera, M.; Pfeiffer, H.; Ramírez-Rosales, D.; González, I. Dalton Trans. 2020, 49, 4549–4558. DOI: doi.org/10.1039/D0DT00273A. DOI: https://doi.org/10.1039/D0DT00273A
Borodin, O. Curr. Opin. Electrochem. 2019, 13, 86–93. DOI: doi.org/10.1016/j.coelec.2018.10.015.
Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy. Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. Adv. Sci. 2015, 3, 1–20. DOI: doi.org/10.1002/advs.201500213.
Hubble, D.; Brown, D. E.; Zhao, Y.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Energy Environ. Sci. 2022, 15, 550–578. DOI: doi.org/10.1039/D1EE01789F. DOI: https://doi.org/10.1039/D1EE01789F
Borodin, O. Curr. Opin. Electrochem. 2019, 13, 86–93. DOI: doi.org/10.1016/j.coelec.2018.10.015.
Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy. Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408.
Wu, J.; Wang, X.; Liu, Q.; Wang, S.; Zhou, D.; Kang, F.; Shanmukaraj, D.; Armand, M.; Rojo, T.; Li, B.; Wang, G. Nat. Commun. 2021, 12, 5746. DOI: doi.org/10.1038/s41467-021-26073-6. DOI: https://doi.org/10.1038/s41467-021-26073-6
Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. ChemSusChem. 2015, 8, 2154–2175. DOI: doi.org/10.1002/cssc.201500284. DOI: https://doi.org/10.1002/cssc.201500284
Chen, S.-P.; Lv, D.; Chen, J.; Zhang, Y.-H.; Shi, F.-N. Energy Fuels. 2022, 36, 1232–1251. DOI: doi.org/10.1021/acs.energyfuels.1c03757. DOI: https://doi.org/10.1021/acs.energyfuels.1c03757
Guzmán, G.; Vazquez-Arenas, J.; Ramos-Sánchez, G.; Bautista-Ramírez, M.; González, I. Electrochim. Acta. 2017, 247. DOI: doi.org/10.1016/j.electacta.2017.06.172. DOI: https://doi.org/10.1016/j.electacta.2017.06.172
Lee, U.; Xu, K.; Zhang, S. S.; Jow, T. R. MRS Online Proc. Libr. 2005, 835, K6.10. DOI: 10.1557/PROC-835-K6.10. DOI: https://doi.org/10.1557/PROC-835-K6.10
Xiao, A.; Yang, L.; Lucht, B. L. Electrochem. Solid-State Lett. 2007, 10, A241. DOI: doi.org/10.1149/1.2772084. DOI: https://doi.org/10.1149/1.2772084
Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A. Electrochem. Solid-State Lett. 2002, 5 (1), A26. DOI: doi.org/10.1149/1.1426042. DOI: https://doi.org/10.1149/1.1426042
Adenusi, H.; Chass, G. A.; Passerini, S.; Tian, K. V; Chen, G. Adv. Energy Mater. 2023, 13, 2203307. doi.org/10.1002/aenm.202203307. DOI: https://doi.org/10.1002/aenm.202203307
Qu, W.; Dorjpalam, E.; Rajagopalan, R.; Randall, C. A. ChemSusChem. 2014, 7, 1162–1169. DOI: doi.org/10.1002/cssc.201300858. DOI: https://doi.org/10.1002/cssc.201300858
Fu, C.; Ma, Y.; Lou, S.; Cui, C.; Xiang, L.; Zhao, W.; Zuo, P.; Wang, J.; Gao, Y.; Yin, G. J. Mater. Chem. A Mater. 2020, 8, 2066–2073. DOI: doi.org/10.1039/C9TA11341J. DOI: https://doi.org/10.1039/C9TA11341J
Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M. H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J.-G. ACS Energy Lett. 2018, 3, 2059–2067. DOI: doi.org/10.1021/acsenergylett.8b00935. DOI: https://doi.org/10.1021/acsenergylett.8b00935
Borodin, O.; Self, J.; Persson, K. A.; Wang, C.; Xu, K. Joule. 2020, 4, 69–100. DOI: doi.org/10.1016/j.joule.2019.12.007. DOI: https://doi.org/10.1016/j.joule.2019.12.007
Méry, A.; Rousselot, S.; Lepage, D.; Dollé, M. Materials. 2021. DOI: doi.org/10.3390/ma14143840.
Gancarz, P.; Zorębski, E.; Dzida, M. Electrochem. Commun. 2021, 130, 107107. DOI: 10.1016/j.elecom.2021.107107. DOI: https://doi.org/10.1016/j.elecom.2021.107107
Keller, M.; Varzi, A.; Passerini, S. Power Sources. 2018, 392, 206–225. DOI: doi.org/10.1016/j.jpowsour.2018.04.099.
Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. ACS Appl. Mater. Interfaces. 2020, 12, 7249–7256. DOI: doi.org/10.1021/acsami.9b20436. DOI: https://doi.org/10.1021/acsami.9b20436
Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; He, X. InfoMat. 2023, e12394. DOI: doi.org/10.1002/inf2.12394.
Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Chem. Mater. 2020, 32, 7237–7246. DOI: doi.org/10.1021/acs.chemmater.0c01489.
Hei, Z.; Wu, S.; Zheng, H.; Liu, H.; Duan, H. Solid State Ionics. 2022, 375, 115837. DOI: doi.org/10.1016/j.ssi.2021.115837. DOI: https://doi.org/10.1016/j.ssi.2021.115837
Yoon, J.; Oh, D. X.; Jo, C.; Lee, J.; Hwang, D. S. Phys. Chem. Chem.Phys. 2014, 16, 25628–25635. DOI: doi.org/10.1039/C4CP03499F. DOI: https://doi.org/10.1039/C4CP03499F
Elmore, T. C.; Seidler, E. M.; Ford, O. H.; Merrill, C. L.; Upadhyay, P. S.; Schneider, F. W.; Schaefer, L. J. Batteries. 2018. DOI: doi.org/10.3390/batteries4020028.
Han, J.; Yagi, S.; Takeuchi, H.; Nakayama, M.; Ichitsubo, T. J. Mater. Chem. A Mater. 2021, 9, 26401–26409. doi.org/10.1039/D1TA08115B. DOI: https://doi.org/10.1039/D1TA08115B
Solchenbach, S.; Hong, G.; Freiberg, A. T. S.; Jung, R.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A3304. DOI: doi.org/10.1149/2.0511814jes. DOI: https://doi.org/10.1149/2.0511814jes
Guzmán, G.; Nava, D.; Vazquez-Arenas, J.; Cardoso, J.; Alvarez-Ramirez, J. Solid State Ionics. 2018, 320, 45–54. DOI: doi.org/10.1016/j.ssi.2018.02.031. DOI: https://doi.org/10.1016/j.ssi.2018.02.031
Lee, M.-S.; Roev, V.; Jung, C.; Kim, J.-R.; Han, S.; Kang, H.-R.; Im, D.; Kim, I.-S. ChemistrySelect. 2018, 3, 11527–11534. DOI: doi.org/10.1002/slct.201800757. DOI: https://doi.org/10.1002/slct.201800757
Tan, P.; Yue, J.; Yu, Y.; Liu, B.; Liu, T.; Zheng, L.; He, L.; Zhang, X.; Suo, L.; Hong, L. J. Phys. Chem. C. 2021, 125, 11838–11847. DOI: doi.org/10.1021/acs.jpcc.1c01663. DOI: https://doi.org/10.1021/acs.jpcc.1c01663
Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Prog. Polym. Sci. 2018, 81, 114–143. DOI: doi.org/10.1016/j.progpolymsci.2017.12.004. DOI: https://doi.org/10.1016/j.progpolymsci.2017.12.004
Rosenwinkel, M. P.; Schönhoff, M. J. Electrochem. Soc. 2019, 166, A1977. DOI: doi.org/10.1149/2.0831910jes. DOI: https://doi.org/10.1149/2.0831910jes
Wohde, F.; Balabajew, M.; Roling, B. J. Electrochem. Soc. 2016, 163, A714. DOI: doi.org/10.1149/2.0811605jes. DOI: https://doi.org/10.1149/2.0811605jes
Fang, C.; Mistry, A.; Srinivasan, V.; Balsara, N. P.; Wang, R. JACS Au. 2023, 3, 306–315. DOI: doi.org/10.1021/jacsau.2c00590. DOI: https://doi.org/10.1021/jacsau.2c00590
Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer (Guildf), 1987, 28, 2324–2328. DOI: doi.org/10.1016/0032-3861(87)90394-6. DOI: https://doi.org/10.1016/0032-3861(87)90394-6
Parimalam, B. S.; Lucht, B. L. J. Electrochem. Soc. 2018, 165, A251–A255. DOI: doi.org/10.1149/2.0901802jes. DOI: https://doi.org/10.1149/2.0901802jes
Chen, L.; Wu, H.; Ai, X.; Cao, Y.; Chen, Z. Battery Energy. 2022, 1, 20210006. DOI: doi.org/10.1002/bte2.20210006. DOI: https://doi.org/10.1002/bte2.20210006
Borodin, O.; Han, S.-D.; Daubert, J. S.; Seo, D. M.; Yun, S.-H.; Henderson, W. A. J. Electrochem. Soc. 2015, 162, A501–A510. DOI: doi.org/10.1149/2.0891503jes. DOI: https://doi.org/10.1149/2.0891503jes
Horwitz, G.; Calvo, E. J.; Méndez De Leo, L. P.; De La Llave, E. Chem. Phys. 2020, 22, 16615–16623. DOI: doi.org/10.1039/d0cp02568b. DOI: https://doi.org/10.1039/D0CP02568B
Di Lecce, D.; Marangon, V.; Jung, H.-G.; Tominaga, Y.; Greenbaum, S.; Hassoun, J. Green Chem. 2022. DOI: doi.org/10.1039/D1GC03996B.
Alvarez-Tirado, M.; Castro, L.; Guzmán-González, G.; Guéguen, A.; Tomé, L. C.; Mecerreyes, D. Energy Mater. 2023, 3, 1–6.
Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J.-G.; Xu, W. Chem. 2018, 4, 1877–1892. DOI: doi.org/10.1016/j.chempr.2018.05.002. DOI: https://doi.org/10.1016/j.chempr.2018.05.002
Xu, D.; Wang, Z.; Xu, J.; Zhang, L.; Zhang, X. Chem. Commun. 2012, 48, 6948–6950. DOI: doi.org/10.1039/C2CC32844E. DOI: https://doi.org/10.1039/c2cc32844e
Moon, H.; Cho, S.-J.; Yu, D.-E.; Lee, S.-Y. Energy Environ. Mater. 2022. DOI: doi.org/10.1002/eem2.12383.
Scrosati, B.; Vincent, C. A. MRS Bull. 2000, 25, 28–30. DOI: doi.org/DOI: 10.1557/mrs2000.15. DOI: https://doi.org/10.1557/mrs2000.15
Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A Mater. 2015, 3, 19218–19253. DOI: doi.org/10.1039/C5TA03471J. DOI: https://doi.org/10.1039/C5TA03471J
Plesse, C.; Khaldi, A.; Wang, Q.; Cattan, E.; Teyssié, D.; Chevrot, C.; Vidal, F. Smart. Mater. Struct. 2011, 20, 124002. DOI: doi.org/10.1088/0964-1726/20/12/124002. DOI: https://doi.org/10.1088/0964-1726/20/12/124002
Ketkar, P. M.; Epps, T. H. I. I. I. Acc. Chem. Res. 2021, 54, 4342–4353. DOI: doi.org/10.1021/acs.accounts.1c00468. DOI: https://doi.org/10.1021/acs.accounts.1c00468
Solarajan, A. K.; Murugadoss, V.; Angaiah, S. Sci. Rep. 2017, 7, 45390. DOI: https://doi.org/10.1038/srep45390
Olmedo-Martínez, J.; Porcarelli, L.; Guzmán-González, G.; Calafel, M. I.; Forsyth, M.; Mecerreyes, D.; Müller, A. ACS Appl. Polym. Mater. 2021, 3, 6326–6337. DOI: doi.org/10.1021/acsapm.1c01093. DOI: https://doi.org/10.1021/acsapm.1c01093
Long, L.; Wang, S.; Xiao, M.; Meng, Y. J. Mater. Chem. A Mater. 2016, 4, 10038–10069. DOI: doi.org/10.1039/C6TA02621D. DOI: https://doi.org/10.1039/C6TA02621D
Voropaeva, D. Y.; Novikova, S. A.; Yaroslavtsev, A. B. Russ. Chem. Rev. 2020, 89, 1132–1155. DOI: https://doi.org/10.1070/RCR4956
Guzmán, G.; Nava, D. P.; Vazquez-Arenas, J.; Cardoso, J. Macromol. Symp. 2017, 374, 1600136. DOI: doi.org/10.1002/masy.201600136. DOI: https://doi.org/10.1002/masy.201600136
Strauss, E.; Menkin, S.; Golodnitsky, D. J. Solid State Electrochem. 2017, 21, 1879–1905. DOI: doi.org/10.1007/s10008-017-3638-8. DOI: https://doi.org/10.1007/s10008-017-3638-8
Savoie, B. M.; Webb, M. A.; Miller, T. F. Enhancing. J. Phys. Chem. Lett. 2017, 8, 641–646. DOI: doi.org/10.1021/acs.jpclett.6b02662. DOI: https://doi.org/10.1021/acs.jpclett.6b02662
Zhang, Z.; Zhang, P.; Liu, Z.; Du, B.; Peng, Z. ACS Appl. Mater. Interfaces. 2020, 12, 11635–11642. DOI: doi.org/10.1021/acsami.9b21655. DOI: https://doi.org/10.1021/acsami.9b21655
Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Angew. Chem. Int. Ed. Engl. 2016, 55, 2521–2525. DOI: doi.org/10.1002/anie.201509299. DOI: https://doi.org/10.1002/anie.201509299
Lin, Y.-Y.; Chen, Y.-M.; Hou, S.-S.; Jan, J.-S.; Lee, Y.-L.; Teng, H. J. Mater. Chem. A Mater. 2017, 5, 17476–17481. DOI: doi.org/10.1039/C7TA04886F. DOI: https://doi.org/10.1039/C7TA04886F
Piszcz, M.; Garcia-Calvo, O.; Oteo, U.; Lopez del Amo, J. M.; Li, C.; Rodriguez-Martinez, L. M.; Youcef, H. Ben; Lago, N.; Thielen, J.; Armand, M. Electrochim. Acta. 2017, 255, 48–54. DOI: doi.org/10.1016/j.electacta.2017.09.139. DOI: https://doi.org/10.1016/j.electacta.2017.09.139
Thomas, K. E.; Sloop, S. E.; Kerr, J. B.; Newman, J. Power Sources. 2000, 89, 132–138. DOI: doi.org/10.1016/S0378-7753(00)00420-1. DOI: https://doi.org/10.1016/S0378-7753(00)00420-1
Alvarez Tirado, M.; Castro, L.; Guzmán-González, G.; Porcarelli, L.; Mecerreyes, D. ACS Appl. Energy Mater. 2021, 4, 295–302. DOI: doi.org/10.1021/acsaem.0c02255.
Shobukawa, H.; Tokuda, H.; Tabata, S.-I.; Watanabe, M. Electrochim. Acta. 2004, 50, 305–309. DOI: doi.org/10.1016/j.electacta.2004.01.096. DOI: https://doi.org/10.1016/j.electacta.2004.01.096
Feng, S.; Shi, D.; Liu, F.; Zheng, L.; Nie, J.; Feng, W.; Huang, X.; Armand, M.; Zhou, Z. Electrochim. Acta. 2013, 93, 254–263. DOI: doi.org/10.1016/j.electacta.2013.01.119. DOI: https://doi.org/10.1016/j.electacta.2013.01.119
Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. J. Mater. Chem. A Mater. 2020, 8, 1557–1577. DOI: doi.org/10.1039/C9TA11178F. DOI: https://doi.org/10.1039/C9TA11178F
Guzmán-González, G.; Ávila-Paredes, H. J.; Rivera, E.; González, I. ACS Appl. Mater. Interfaces. 2018, 10. DOI: doi.org/10.1021/acsami.8b02519. DOI: https://doi.org/10.1021/acsami.8b02519
Guzmán-González, G.; Ramos-Sánchez, G.; Camacho-Forero, L. E.; González, I. J. Phys. Chem. C. 2019, 123. DOI: doi.org/10.1021/acs.jpcc.9b02945. DOI: https://doi.org/10.1021/acs.jpcc.9b02945
Guzmán-González, G.; Vauthier, S.; Alvarez-Tirado, M.; Cotte, S.; Castro, L.; Guéguen, A.; Casado, N.; Mecerreyes, D. Angew. Chem. Int. Ed. 2022, 61, e202114024. DOI: doi.org/10.1002/anie.202114024. DOI: https://doi.org/10.1002/anie.202114024
Itoh, T.; Mitsuda, Y.; Ebina, T.; Uno, T.; Kubo, M. Power Sources. 2009, 189, 531–535. DOI: doi.org/10.1016/j.jpowsour.2008.10.113. DOI: https://doi.org/10.1016/j.jpowsour.2008.10.113
Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Green Energy Environ. 2016, 1, 18–42. DOI: doi.org/10.1016/j.gee.2016.04.006. DOI: https://doi.org/10.1016/j.gee.2016.04.006
Xu, W.; Williams, M. D.; Angell, C. A. Chem. Mater. 2002, 14, 401–409. DOI: doi.org/10.1021/cm010699n. DOI: https://doi.org/10.1021/cm010699n
Shim, J.; Lee, J. S.; Lee, J. H.; Kim, H. J.; Lee, J.-C. ACS Appl. Mater. Interfaces. 2016, 8, 27740–27752. DOI: doi.org/10.1021/acsami.6b09601. DOI: https://doi.org/10.1021/acsami.6b09601
Choudhury, S.; Tu, Z.; Nijamudheen, A.; Zachman, M. J.; Stalin, S.; Deng, Y.; Zhao, Q.; Vu, D.; Kourkoutis, L. F.; Mendoza-Cortes, J. L.; Archer, L. A. Nat. Commun. 2019, 10, 1–11. DOI: doi.org/10.1038/s41467-019-11015-0. DOI: https://doi.org/10.1038/s41467-019-11015-0
Tsao, C.-H.; Hsu, C.-H.; Kuo, P.-L. Electrochim. Acta. 2016, 196, 41–47. DOI: doi.org/10.1016/j.electacta.2016.02.154. DOI: https://doi.org/10.1016/j.electacta.2016.02.154
Fongy, C.; Jouanneau, S.; Guyomard, D.; Badot, J. C.; Lestriez, B. J. Electrochem. Soc. 2010, 157, A1347. DOI: doi.org/10.1149/1.3497353. DOI: https://doi.org/10.1149/1.3497353
Orikasa, Y.; Gogyo, Y.; Yamashige, H.; Katayama, M.; Chen, K.; Mori, T.; Yamamoto, K.; Masese, T.; Inada, Y.; Ohta, T.; Siroma, Z.; Kato, S.; Kinoshita, H.; Arai, H.; Ogumi, Z.; Uchimoto, Y. Sci. Rep. 2016, 6, 26382. DOI: doi.org/10.1038/srep26382. DOI: https://doi.org/10.1038/srep26382
Guy, D.; Lestriez, B.; Bouchet, R.; Guyomard, D. J. Electrochem. Soc. 2006, 153, A679. DOI: doi.org/10.1149/1.2168049. DOI: https://doi.org/10.1149/1.2168049
Yang, H.; Wu, N. Energy Sci. Eng. 2022, 10, 1643–1671. DOI: doi.org/10.1002/ese3.1163. DOI: https://doi.org/10.1002/ese3.1163
Liu, X.; Fu, J.; Zhang, C. Nanoscale Res. Lett. 2016, 11, 551. DOI: doi.org/10.1186/s11671-016-1768-z.
Yang, S.; Liang, Q.; Wu, H.; Pi, J.; Wang, Z.; Luo, Y.; Liu, Y.; Long, Z.; Zhou, D.; Wen, Y.; Wang, Q.; Guo, J.; Qiu, J. J. Phys. Chem. Lett. 2022, 13, 4981–4987. DOI: doi.org/10.1021/acs.jpclett.2c01052. DOI: https://doi.org/10.1021/acs.jpclett.2c01052
Xie, W.; Cao, J.; Li, P.; Fan, M.; Xu, S.; Du, J.; Zhang, J. Mater. Des. 2022, 220, 110860. DOI: doi.org/10.1016/j.matdes.2022.110860. DOI: https://doi.org/10.1016/j.matdes.2022.110860
Mathieson, A.; Feldmann, S.; De Volder, M. JACS Au. 2022, 2, 1313–1317. DOI: doi.org/10.1021/jacsau.2c00212. DOI: https://doi.org/10.1021/jacsau.2c00212
Sastre, J.; Priebe, A.; Döbeli, M.; Michler, J.; Tiwari, A. N.; Romanyuk, Y. E. Adv. Mater. Interfaces. 2020, 7, 2000425. DOI: doi.org/10.1002/admi.202000425. DOI: https://doi.org/10.1002/admi.202000425
Indu, M. S.; Alexander, G. V; Sreejith, O. V; Abraham, S. E.; Murugan, R. Mater. Today Energy. 2021, 21, 100804. DOI: doi.org/10.1016/j.mtener.2021.100804. DOI: https://doi.org/10.1016/j.mtener.2021.100804
Kato, A.; Yamamoto, M.; Utsuno, F.; Higuchi, H.; Takahashi, M. Commun. Mater. 2021, 2, 112. DOI: doi.org/10.1038/s43246-021-00216-0. DOI: https://doi.org/10.1038/s43246-021-00216-0
Zhou, J.; Chen, P.; Wang, W.; Zhang, X. Chem. Eng. J. 2022, 446, 137041. DOI: doi.org/10.1016/j.cej.2022.137041. DOI: https://doi.org/10.1016/j.cej.2022.137041
Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Chem. Rev. 2016, 116, 140–162. DOI: doi.org/10.1021/acs.chemrev.5b00563. DOI: https://doi.org/10.1021/acs.chemrev.5b00563
Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Nat. Mater. 2019, 18, 1278–1291. DOI: doi.org/10.1038/s41563-019-0431-3. DOI: https://doi.org/10.1038/s41563-019-0431-3
Zhao, S.; Jiang, W.; Zhu, X.; Ling, M.; Liang, C. Sustainable Mater. Technol. 2022, 33, e00491. DOI: doi.org/10.1016/j.susmat.2022.e00491 DOI: https://doi.org/10.1016/j.susmat.2022.e00491
Moganty, S. S.; Jayaprakash, N.; Nugent, J. L.; Shen, J.; Archer, L. A. Angew. Chem. Int. Ed. 2010, 49, 9158–9161. DOI: doi.org/10.1002/anie.201004551. DOI: https://doi.org/10.1002/anie.201004551
Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Chem. 2019, 5, 2326–2352. DOI: doi.org/10.1016/j.chempr.2019.05.009. DOI: https://doi.org/10.1016/j.chempr.2019.05.009
Zhu, M.; Wu, J.; Wang, Y.; Song, M.; Long, L.; Siyal, S. H.; Yang, X.; Sui, G. J. Energy Chem. 2019, 37, 126–142. DOI: doi.org/10.1016/j.jechem.2018.12.013. DOI: https://doi.org/10.1016/j.jechem.2018.12.013
Fu, S.; Zuo, L.-L.; Zhou, P.-S.; Liu, X.-J.; Ma, Q.; Chen, M.-J.; Yue, J.-P.; Wu, X.-W.; Deng, Q. Mater. Chem. Front. 2021, 5, 5211–5232. DOI: doi.org/10.1039/D1QM00096A. DOI: https://doi.org/10.1039/D1QM00096A
Nava, D. P.; Guzmán, G.; Vazquez-Arenas, J.; Cardoso, J.; Gomez, B.; Gonzalez, I. Solid State Ionics. 2016, 290. DOI: doi.org/10.1016/j.ssi.2016.03.020. DOI: https://doi.org/10.1016/j.ssi.2016.03.020
Alvarez Tirado, M.; Castro, L.; Guzmán-González, G.; Porcarelli, L.; Mecerreyes, D. Single-ACS Appl. Energy Mater. 2021, 4, 295–302. DOI: doi.org/10.1021/acsaem.0c02255. DOI: https://doi.org/10.1021/acsaem.0c02255
Baskoro, F.; Wong, H. Q.; Yen, H.-J. ACS Appl. Energy Mater. 2019, 2, 3937–3971. DOI: doi.org/10.1021/acsaem.9b00295. DOI: https://doi.org/10.1021/acsaem.9b00295
Susan, Md. A. B. H.; Kaneko, T.; Noda, A.; Watanabe, M. J. Am. Chem. Soc. 2005, 127, 4976–4983. DOI: doi.org/10.1021/ja045155b. DOI: https://doi.org/10.1021/ja045155b
Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem. 2014, 15, 1956–1969. DOI: doi.org/10.1002/cphc.201402175. DOI: https://doi.org/10.1002/cphc.201402175
Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Adv. Energy Mater. 2015, 5, 1401408. DOI: doi.org/10.1002/aenm.201401408. DOI: https://doi.org/10.1002/aenm.201570018
Abbas, Z.; Labbez, C.; Nordholm, S.; Ahlberg, E. J. Phys. Chem. C. 2008, 112, 5715–5723. DOI: doi.org/10.1021/jp709667u. DOI: https://doi.org/10.1021/jp709667u
Pacchioni, G. Eur. J. Inorg. Chem. 2019, 2019, 751–761. DOI: doi.org/10.1002/ejic.201801314. DOI: https://doi.org/10.1002/ejic.201801314
Cheng, S.; Xie, S.-J.; Carrillo, J.-M. Y.; Carroll, B.; Martin, H.; Cao, P.-F.; Dadmun, M. D.; Sumpter, B. G.; Novikov, V. N.; Schweizer, K. S.; Sokolov, A. P. ACS Nano. 2017, 11, 752–759. DOI: doi.org/10.1021/acsnano.6b07172. DOI: https://doi.org/10.1021/acsnano.6b07172
Ma, C.; Zhang, J.; Xu, M.; Xia, Q.; Liu, J.; Zhao, S.; Chen, L.; Pan, A.; Ivey, D. G.; Wei, W. Power Sources. 2016, 317, 103–111. DOI: doi.org/10.1016/j.jpowsour.2016.03.097. DOI: https://doi.org/10.1016/j.jpowsour.2016.03.097
Bantz, C.; Koshkina, O.; Lang, T.; Galla, H.-J.; Kirkpatrick, C. J.; Stauber, R. H.; Maskos, M. Beilstein J. Nanotechnol. 2014, 5, 1774–1786. DOI: doi.org/10.3762/bjnano.5.188. DOI: https://doi.org/10.3762/bjnano.5.188
Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature. 1998, 394, 456–458. DOI: doi.org/10.1038/28818. DOI: https://doi.org/10.1038/28818
Shim, J.; Kim, D.-G.; Kim, H. J.; Lee, J. H.; Lee, J.-C. ACS Appl. Mater. Interfaces. 2015, 7, 7690–7701. DOI: doi.org/10.1021/acsami.5b00618. DOI: https://doi.org/10.1021/acsami.5b00618
Manuel Stephan, A.; Nahm, K. S. Polymer (Guildf). 2006, 47, 5952–5964. DOI: doi.org/10.1016/j.polymer.2006.05.069. DOI: https://doi.org/10.1016/j.polymer.2006.05.069
Keller, M.; Varzi, A.; Passerini, S. Power Sources. 2018, 392, 206–225. DOI: doi.org/10.1016/j.jpowsour.2018.04.099. DOI: https://doi.org/10.1016/j.jpowsour.2018.04.099
Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Chem. Mater. 2020, 32, 7237–7246. DOI: doi.org/10.1021/acs.chemmater.0c01489. DOI: https://doi.org/10.1021/acs.chemmater.0c01489
Yao, Y. University of Wollongong, thesis, 2008. https://ro.uow.edu.au/theses/88/ , accessed in July 2023.
Plylahan, N.; Kerner, M.; Lim, D.-H.; Matic, A.; Johansson, P. Electrochim. Acta. 2016, 216, 24–34. DOI: doi.org/10.1016/j.electacta.2016.08.025. DOI: https://doi.org/10.1016/j.electacta.2016.08.025


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Gregorio Guzman Gonzalez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
