Point-Defect Chemistry on the Polarization Behavior of Niobium Doped Bismuth Titanate
DOI:
https://doi.org/10.29356/jmcs.v61i4.462Keywords:
Ceramics, Dielectric properties, Point defects, Electrical properties.Abstract
The present work shows the defect chemistry at room temperature of Bi4Ti3O12, emphasizing the effect of point defects on the ferroelectric properties. Electrical measurements of conductivity, dielectric permittivity and dielectric loss as well as structural characterization and Electron Spin Resonance (ESR) were used to deduce the existence of different point defects. Pure and Niobium doped bismuth titanate ceramic were prepared by a conventional solid state reaction technique. Rietveld refinement analysis suggested that niobium atoms occupy the titanium lattice sites and the presence of bismuth vacancies. Electron Spin Resonance measurements showed signals that are associated to iron impurities. The present communication supports the models of compensation mechanisms dominated by free electrons and bismuth vacancies.Downloads
References
Mikolajick, T.; Dehm, C.; Hartner, W.; Kasko, I.; Kastner, M.J.; Nagel, N.; Moert, M.; Mazure, C.; Microelectronics Reliability 2001, 41, 947-950. DOI: https://doi.org/10.1016/S0026-2714(01)00049-X
Baldi, L.; Bez, R.; Sandhu, G. Solid-State Electronics 2014, 102, 2-11. DOI: https://doi.org/10.1016/j.sse.2014.06.009
Fabian, A.; Gitanjali, K.; Maxime, B., Azza H.; Rafik N.; Andranik, S.; Reji, T.; Carlos G.Marc, A. G.; Andreas, R. ACS Appl. Mater. Interfaces 2017, 9 (15), 13262–13268. DOI: https://doi.org/10.1021/acsami.6b16173
Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S. Rep Prog Phys 2012, 75 (7), 076502. DOI: https://doi.org/10.1088/0034-4885/75/7/076502
Kao, M. C.; Chen, H. Z.; Young, S. L.; Chuang, B. N.; Jiang, W. W.; Song, J. S.; Jhan, S. S.; Chiang, J. L.; Wu, L. T. J. Cryst. Growth 2012, 338 (1), 139-142. DOI: https://doi.org/10.1016/j.jcrysgro.2011.11.033
Kohlstedt, H.; Mustafa, Y.; Gerber, A.; Petraru, A.; Fitsilis, M.; Meyer, R.; Böttger, U.; Waser, R. Microelectron. Eng. 2005, 80, 296-304. DOI: https://doi.org/10.1016/j.mee.2005.04.084
Fabian, A.; Ivan, V.; Thomas, R.; Ruediger, A. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 2016, 34 (2), 02M101.
Kang, S. W. R. J. Mater. Sci.: Mater. Electron. 2004, 2004, 231-234. 9. Makarov, A.; Sverdlov, V.; Selberherr, S. Microelectron. Reliab. 2012, 52 (4), 628-634. DOI: https://doi.org/10.1016/j.microrel.2011.10.020
Fabian, A.; Gintanjali, K.; Thomas, R.; Nouar, R.; A. Sarkissian, Carlos, G.; Marc, G.; Ruediger, A. Appl. Phys. Lett. 2017, 110, 093106
Soni, R.; Petraru, A.; Meuffels, P.; Vavra, O.; Ziegler, M.; Kim, S. K.; Jeong, D. S.; Pertsev, N. A.; Kohlstedt, H. Nat Commun 2014, 5, 5414. DOI: https://doi.org/10.1038/ncomms6414
Wu, A.; Soares, M. R.; Miranda Salvado, I. M.; Vilarinho, P. M. Mater. Res. Bull. 2012, 47 (11), 3819-3824. DOI: https://doi.org/10.1016/j.materresbull.2012.04.033
Oliveira, R. C.; Cavalcante, L. S.; Sczancoski, J. C.; Aguiar, E. C.; Espinosa, J. W. M.; Varela, J. A.; Pizani, P. S.; Longo, E. J. Alloys Compd. 2009, 478 (1-2), 661-670. DOI: https://doi.org/10.1016/j.jallcom.2008.11.115
Martin, L. W.; Chu, Y. H.; Ramesh, R. Mater. Sci. Eng. 2010, 68 (4-6), 89-133. DOI: https://doi.org/10.1016/j.mser.2010.03.001
Noguchi, T. G.; Miyayama, M.; Hoshikawa, A.; Kamiyama, T. J Electroceram 2008, 21, 49-54.
Materlik, R.; Künneth, C.; Kersch, A. J. Appl. Phys. 2015, 117 (13), 134109. DOI: https://doi.org/10.1063/1.4916707
Zhang, L.; Chu, R.; Zhao, S.; Li, G.; Yin, Q. Mater. Sci. Eng: B 2005, 116 (1), 99-103. DOI: https://doi.org/10.1016/j.mseb.2004.09.007
Bao, Z.H.; Zhu, J.S.; Wang, J.S. Mater. Lett. 2002, 56, 861– 866. DOI: https://doi.org/10.1515/9783110905953.861
Lee, S.-Y.; Park, B.-O. J. Cryst. Growth 2005, 283 (1-2), 81-86. DOI: https://doi.org/10.1016/j.jcrysgro.2005.04.097
Simões, A. Z.; Aguiar, E. C.; Ries, A.; Longo, E.; Varela, J. A. Mater. Lett. 2007, 61 (2), 588-591. DOI: https://doi.org/10.1016/j.matlet.2006.05.014
Nowotny, M. K.; Nowotny, J. J. Phys. Chem. B 2006, 110, 16283-16291. DOI: https://doi.org/10.1021/jp060622s
Laguta, V. V.; Slipenyuk, A. M.; Bykov, I. P.; Glinchuk, M. D.; Maglione, M.; Michau, D.; Rosa, J.; Jastrabik, L. Appl. Phys. Lett. 2005, 87 (2), 022903. DOI: https://doi.org/10.1063/1.1954900
Laguta, V. V.; Slipenyuk, A. M.; Bykov, I. P.; Glinchuk, M. D.; Maglione, M.; Bilous, A. G.; V?yunov, O. I.; Rosa, J.; Jastrabik, L. J. Appl. Phys. 2005, 97 (7), 073707. DOI: https://doi.org/10.1063/1.1868856
Santos, J. C.; Mir, M.; Mastelaro, V.R.; Hernandes, A.C. J. Eur. Ceram. Soc. 2009, 751–756. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.06.025
Jose, O.; Carlos, G.; Palacios-Romero, C.; Lima, E.; Pfeiffer, H. J Phys Chem A 2012, 116 (12), 3163-71. DOI: https://doi.org/10.1021/jp3006298
Machura, D.; Rymarczyk, J.; Ilczuk, J. Eur. Phys. J.: Spec. Top. 2008, 154 (1), 131-134. DOI: https://doi.org/10.1140/epjst/e2008-00531-4
Jardiel, T.; Caballero, A. C.; Fernández, J. F.; Villegas, M. J. Eur. Ceram. Soc. 2006, 26 (13), 2823-2826. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.05.003
Kim, H. J.; Park, M. H.; Kim, Y. J.; Lee, Y. H.; Jeon, W.; Gwon, T.; Moon, T.; Kim, K. D.; Hwang, C. S. Appl. Phys. Lett. 2014, 105
(19), 192903.
Paredes-Olguín, M.; Lira-Hernández, I. A.; Gómez-Yáñez, C.; Espino-Cortés, F. P. Phys. B 2013, 410, 157-161. DOI: https://doi.org/10.1016/j.physb.2012.11.001
Tao, L. L.; Wang, J. J. Appl. Phys. 2016, 119 (22), 224104. DOI: https://doi.org/10.1063/1.4953642
Park, M. H.; Lee, Y. H.; Kim, H. J.; Kim, Y. J.; Moon, T.; Kim, K. D.; Muller, J.; Kersch, A.; Schroeder, U.; Mikolajick, T.; Hwang, C. S. Adv Mater 2015, 27 (11), 1811-31. DOI: https://doi.org/10.1002/adma.201404531
Velasco-Davalos, I.; Ambriz-Vargas, F.; Gómez-Yáñez, C.; Thomas, R.; Ruediger, A. J. Alloys Compd. 2016, 667, 268-274. DOI: https://doi.org/10.1016/j.jallcom.2016.01.145
Velasco-Davalos, I.; Ambriz-Vargas, F.; Kolhatkar, G.; Thomas, R.; Ruediger, A. AIP Advances 2016, 6 (6), 065117. DOI: https://doi.org/10.1063/1.4954695
Velasco-Davalos, I. A.; Moretti, M.; Nicklaus, M.; Nauenheim, C.; Li, S.; Nechache, R.; Gomez-Yanez, C.; Ruediger, A. Appl. Phys. A: Mater. Sci. Process. 2013, 115 (3), 1081-1085. DOI: https://doi.org/10.1007/s00339-013-7952-4
Velasco-Davalos, I. A.; Ruediger, A.; Cruz-Rivera, J. J.; Gomez-Yanez, C. J. Alloys Compd. 2013, 581, 56-58. DOI: https://doi.org/10.1016/j.jallcom.2013.06.187
Yoo, Y. W.; Jeon, W.; Lee, W.; An, C. H.; Kim, S. K.; Hwang, C. S. ACS Appl Mater Interfaces 2014, 6 (24), 22474-82. DOI: https://doi.org/10.1021/am506525s
Plutenko, T. A.; V?yunov, O. I.; Belous, A. G. Inorg. Mater. 2012, 48 (12), 1183-1189. DOI: https://doi.org/10.1134/S0020168512120047
Chen, M.; Liu, Z. L.; Wang, Y.; Wang, C. C.; Yang, X. S.; Yao, K. L. Phys. B 2004, 352 (1-4), 61-65. DOI: https://doi.org/10.1016/j.physb.2004.06.055
Chen, X. Q.; Yang, F. J.; Cao, W. Q.; Wang, H.; Yang, C. P.; Wang, D. Y.; Chen, K. Solid State Commun. 2010, 150 (27-28), 1221-1224. DOI: https://doi.org/10.1016/j.ssc.2010.04.002
Cheng, Z. X.; Li, A. H.; Wang, X. L.; Dou, S. X.; Ozawa, K.; Kimura, H.; Zhang, S. J.; Shrout, T. R. J. Appl. Phys. 2008, 103 (7), 07E507. DOI: https://doi.org/10.1063/1.2839325
Shimizu, T.; Yokouchi, T.; Oikawa, T.; Shiraishi, T.; Kiguchi, T.; Akama, A.; Konno, T. J.; Gruverman, A.; Funakubo, H. Appl. Phys. Lett. 2015, 106 (11), 112904. DOI: https://doi.org/10.1063/1.4915336
Noguchi, Y.; Yamamoto, K.; Kitanaka, Y.; Miyayama, M. J. Eur. Ceram. Soc. 2007, 27 (13-15), 4081-4084. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.02.104
Kolodiazhnyi, T. J. Phys. chem. Solids 2003, 64, 953-960. DOI: https://doi.org/10.1016/S0022-3697(02)00454-7
Chang, Y.; Kingery, W. D. Defects in Ceramics, J. Wiley 1997, 129-130.
Noguchi, Y.; Goto, T.; Miyayama, M.; Hoshikawa, A.; Kamiyama, T. J. Electroceram. 2007, 21 (1-4), 49-54. DOI: https://doi.org/10.1007/s10832-007-9083-9
Chen, M.; Huang, K.-l.; Mei, X.-a.; Huang, C.-q.; Liu, J.; Cai, A.- h. Trans. Nonferrous Met. Soc. China 2009, 19 (1), 138-142. DOI: https://doi.org/10.1016/S1003-6326(08)60241-1
Chiu, H.-C.; Wu, C.-H.; Chi, J.-F.; Chien, F.-T. Microelectron. Reliab. 2014, 54 (6-7), 1282-1287. DOI: https://doi.org/10.1016/j.microrel.2014.03.006
Murugaraj, P. J. Mater. Sci. Lett 1986, 5, 171-173. DOI: https://doi.org/10.1007/BF01672038
Jakes, P.; Erdem, E.; Eichel, R.-A.; Jin, L.; Damjanovic, D. Appl. Phys. Lett. 2011, 98 (7), 072907. DOI: https://doi.org/10.1063/1.3555465
Zhang, Z. H.; Wu, S. Y.; Kuang, M. Q.; Song, B. T. Eur. Phys. J.: Appl. Phys. 2011, 56 (1), 10303. DOI: https://doi.org/10.1051/epjap/2011110229
Eichel, R. A. Phys Chem Chem Phys 2011, 13 (2), 368-84. DOI: https://doi.org/10.1039/B918782K
Shelef, A. J. Catal. 2000, 195, 106-112. DOI: https://doi.org/10.1006/jcat.2000.2976
Issa, M. A.; Dughaish, Z. H. J. Phys. D: Apple. Phys 1984, 17, 2037-2047. DOI: https://doi.org/10.1088/0022-3727/17/10/014
Glinchuk, M. D.; Kornienko, S. M.; Laguta, V. V.; Slipenyuk, A. M.; Bilous, A. G.; V?yunov, O. I.; Yanchevskii, O. Z. J. Mater. Chem. 2000, 10, 941-947. DOI: https://doi.org/10.1039/a909647g
Kornienko, M.; Glinchuk, M. D.; Laguta, V.V.; Belous, A. G.; Yastrabik, L. Phys. Solid State 1999, 41, 1838-1842. DOI: https://doi.org/10.1134/1.1131069
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
