Experimental and Statistical Investigation of a Novel Green Inhibitor Ferula Lutea as Potential Corrosion Inhibiting Carbon Steel in an Acidic Medium
DOI:
https://doi.org/10.29356/jmcs.v68i3.1891Keywords:
Corrosion, carbon steel, Ferula lutea, weight loss measurements, surface response methodologyAbstract
Abstract. Carbon steel corrosion inhibition in the presence and absence of Ferula lutea butanolic extract (EBFL) as a corrosion inhibitor was investigated. This study focuses on the optimization of three main parameters: inhibitor concentration, immersion time, and temperature, on the corrosion inhibition of X2C30 carbon steel by EBFL based on the weight loss method. A composite-centered design (CCD) of response surface methodology (RSM) was employed to design the experiment utilizing Design Expert software in to assess the experimental factors that influence the process. Both the corrosion rate and the inhibition efficiency were modeled using logarithmic quadratic equations. The achieved correlation between the predicted and experimental values reveals the accuracy of the proposed models. This investigation proved that (RSM) is a useful tool to predict the optimal operating parameters of the examined inhibitor to mitigate carbon steel corrosion. Gravimetric and electrochemical measurements have indicated that extract (EBFL) exhibits corrosion inhibition properties of X2C30 carbon steel in 1 M hydrochloric acid medium.
Resumen. Se investigó la inhibición de la corrosión del acero al carbono en presencia y ausencia del extracto butanólico de Ferula lutea (EBFL) como inhibidor de la corrosión. Este estudio se centra en la optimización de tres parámetros principales: la concentración del inhibidor, el tiempo de inmersión y la temperatura, sobre la inhibición de la corrosión del acero al carbono X2C30 por el EBFL basándose en el método de la pérdida de peso. Se empleó un diseño centrado en el compuesto (CCD) de la metodología de superficie de respuesta (RSM) para diseñar el experimento utilizando el software Design Expert en para evaluar los factores experimentales que influyen en el proceso. Tanto la velocidad de corrosión como la eficiencia de inhibición se modelaron mediante ecuaciones cuadráticas logarítmicas. La correlación alcanzada entre los valores predichos y los experimentales revela la precisión de los modelos propuestos. Esta investigación demostró que (RSM) es una herramienta útil para predecir los parámetros operativos óptimos del inhibidor examinado para mitigar la corrosión del acero al carbono. Las mediciones gravimétricas y electroquímicas han indicado que el extracto (EBFL) presenta propiedades de inhibición de la corrosión del acero al carbono X2C30 en medio ácido clorhídrico 1 M.
Downloads
References
Al-Moubaraki, A.H.; Obot, I.B. J. Saudi Chem. Soc. 2021, 25, 101370. DOI: https://doi.org/10.1016/j.jscs.2021.101370. DOI: https://doi.org/10.1016/j.jscs.2021.101370
Al-Janabi, Y.T. in: Corrosion Inhibitors in the Oil and Gas Industry, Wiley‐VCH Verlag GmbH & Co. KgaA, 2020. DOI: https://doi.org/10.1002/9783527822140.ch1. DOI: https://doi.org/10.1002/9783527822140.ch1
Trabanelli, G. Corrosion. 1991, 47, 410-419. DOI: https://doi.org/10.5006/1.3585271. DOI: https://doi.org/10.5006/1.3585271
Liu, J.; Yu, W.; Zhang, J.; Hu,S.; You, L.; Qiao, G. Appl. Surf. Sci. 2010, 256, 4729- 4733. DOI: https://doi.org/10.1016/j.apsusc.2010.02.082. DOI: https://doi.org/10.1016/j.apsusc.2010.02.082
Rice, J. Mechanics of Solids. Encyclopedia Britannica, 1993.
Musa, A.Y.; Khadom, A.A.; Kadhum, A.A.H.; Mohamad , A.B; Takriff, M.S. J. Taiwan Inst. Chem. Eng. 2010, 41, 126-128. DOI: https://doi.org/10.1016/j.jtice.2009.08.002. DOI: https://doi.org/10.1016/j.jtice.2009.08.002
Ameer, M.A. ; Fekry, A.M. Int. J. Hydrogen Energy. 2010, 35, 11387-11396. DOI: https://doi.org/10.1016/j.ijhydene.2010.07.071. DOI: https://doi.org/10.1016/j.ijhydene.2010.07.071
Khaled, K.F. Mater. Chem. Phys. 2011, 125, 427-433. 542. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.037. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.037
Balulescu, M. ; Herdan, J. J. Synth. Lubr. 1997, 14, 35-45. 544. DOI: https://doi.org/10.1002/jsl.3000140104. DOI: https://doi.org/10.1002/jsl.3000140104
Zakeri, A. ; Bahmani, E.; Rouh Aghdam, A.S. Corros. Commun. 2022, 5, 25-38. DOI: https://doi.org/10.1016/j.corcom.2022.03.002. DOI: https://doi.org/10.1016/j.corcom.2022.03.002
Yaro, A.S. ; Al-Jendeel, H. ; Khadom, A.A. Desalination. 2011, 270, 193-198. DOI: https://doi.org/10.1016/j.desal.2010.11.045. DOI: https://doi.org/10.1016/j.desal.2010.11.045
Hussin, M.H. ; Kassim, M.J. Mater. Chem. Phys. 2011, 125, 461-468. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.032. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.032
Valek, L.; Martinez, S. Materials Letters. 2007, 61, 148-151. DOI: https://doi.org/10.1016/j.matlet.2006.04.024. DOI: https://doi.org/10.1016/j.matlet.2006.04.024
Behpour, M.. Ghoreishi, S.M. ; Khayatkashani , M.; Soltani ,N. Mater. Chem. Phys. 2012, 131, 621-633. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.027. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.027
Soltani, N.; Tavakkoli, N.; Kashani, M.K.; Mosavizadeh, A.; Oguzie, E.E.; Jalali, M.R. J. Ind. Eng. Chem. 2014, 20, 3217-3227. DOI: https://doi.org/10.1016/j.jiec.2013.12.002. DOI: https://doi.org/10.1016/j.jiec.2013.12.002
Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. J. Ind. Eng. Chem. 2020, 84, 52-71. DOI: https://doi.org/10.1016/j.jiec.2019.12.019. DOI: https://doi.org/10.1016/j.jiec.2019.12.019
Fadhil, A.A.; Khadom, A.A.; Ahmed, S.K.; Liu, H.; Fu, C.; Mahood,H.B. Surf. Interfaces. 2020, 20, 100595. DOI:https://doi.org/10.1016/j.surfin.2020.100595. DOI: https://doi.org/10.1016/j.surfin.2020.100595
Wang, Q.; Tan,B.; Bao, H.; Xie , Y; Mou, Y.; Li, P.; Chen, D.; Shi ,Y.; Li, X.; Yang, W. Bioelectrochemistry. 2019, 128, 49-55. DOI: https://doi.org/10.1016/j.bioelechem.2019.03.001. DOI: https://doi.org/10.1016/j.bioelechem.2019.03.001
Chaubey, N.; Singh, V.K.; Savita ; Quraishi, M.A.; Ebenso, E.E. Int. J. Electrochem. Sci. 2015, 10, 504-518. DOI: https://doi.org/10.1016/S1452-3981(23)05009-5. DOI: https://doi.org/10.1016/S1452-3981(23)05009-5
Boukhedena, W. ; Deghboudj, S. ; Benahmed, M. ; Laouer, H. J. Mex. Chem. Soc. 2022, 66, 248-271. DOI: http://dx.doi.org/10.29356/jmcs.v66i2.1630. DOI: https://doi.org/10.29356/jmcs.v66i2.1630
Kalla, A. ; Benahmed, M. ; Djeddi,N. ; Akkal,S.; Laouer, H. Int J Ind Chem. 2016,7, 419-429. DOI: https://doi.org/10.1007/s40090-016-0094-8. DOI: https://doi.org/10.1007/s40090-016-0094-8
Anwar, B.; Khairunnisa, T. ; Sunarya, Y. Int. J. Corros. Scale Inhib. 2020, 9, 244-256.
Oguzie, E.E. Corros. Sci. 2007,49, 1527-1539.DOI: https://doi.org/10.1016/j.corsci.2006.08.009. DOI: https://doi.org/10.1016/j.corsci.2006.08.009
M’hiri, N.; Veys-Renaux, D.; Rocca, E.; Ioannou, I.; Boudhrioua,N.M.; Ghoul,M. Corros. Sci. 2016, 102, 55-62. DOI: https://doi.org/10.1016/j.corsci.2015.09.017. DOI: https://doi.org/10.1016/j.corsci.2015.09.017
Kosari, A.; Davoodi, A.; Moayed; M.H.; Gheshlaghi, R. Corros. 2015, 71, 819-827. DOI: https://doi.org/10.5006/1578. DOI: https://doi.org/10.5006/1578
Haris, N.I.N.; Sobri, S.; Kassim, N. Mater. Corros. 2019,70, 1111-1119. DOI: https://doi.org/10.1002/maco.201810653. DOI: https://doi.org/10.1002/maco.201810653
Okewale, A.; Adesina, O.; Akpeji, B. Nig. J. Basic Appl. Sci. 2019, 27, 47-56. DOI: 10.4314/njbas.v27i2.7. DOI: https://doi.org/10.4314/njbas.v27i2.7
Caglar, A., Sahan , T.; Selim Cogenli, M.; Yurtcan, A.B.; Aktas, N.; Kivrak, H. Int. J. Hydrogen Energy. 2018, 43, 11002-11011. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.208. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.208
Im, J.-K.; Cho,I.-H; Kim,S.-K.; Zoh, K.-D. Desal. 2012, 285, 306-314. DOI: https://doi.org/10.1016/j.desal.2011.10.018. DOI: https://doi.org/10.1016/j.desal.2011.10.018
Liu, Y.; Wang , J.; Zheng ,Y.; Wang, A. Chem. Eng. J. 2012, 184, 248-255. DOI: https://doi.org/10.1016/j.cej.2012.01.049. DOI: https://doi.org/10.1016/j.cej.2012.01.049
Akkal, S.; Louaar, S.; Benahmed, M.; Laouer, H.; Duddeck, H. Chem. Nat. Compd. 2010, 46, 719-721. DOI: https://doi.org/10.1007/s10600-010-9724-0. DOI: https://doi.org/10.1007/s10600-010-9724-0
Obi-Egbedi, N.O.; Essien, K.E.; Obot, I.B.; Ebenso, E.E. Int. J. Electrochem. Sci. 2011, 6, 913-930. DOI: https://doi.org/10.1016/S1452-3981(23)15045-0. DOI: https://doi.org/10.1016/S1452-3981(23)15045-0
Tinsson, W. in: Plans d'expérience: constructions et analyses statistiques. Springer Science & Business Media, 2010. DOI: https://doi.org/10.1007/978-3-642-11472-4_6
Mongomery, D. in: Montgomery: design and analysis of experiments. John Willy & Sons, 2017.
Ladurée, D.; Paquer, D.; Rioult, P. Rec. Trav. Chim. Pays-Bas. 1977, 96, 254-258. DOI: https://doi.org/10.1002/recl.19770961004. DOI: https://doi.org/10.1002/recl.19770961004
Obot, I. ; Obi-Egbedi, N. Curr. Appl. Phys, 2011, 11, 382-392.DOI: https://doi.org/10.1016/j.cap.2010.08.007. DOI: https://doi.org/10.1016/j.cap.2010.08.007
Abdallah, M. Corros. Sci. 2002, 44, 717-728. DOI: https://doi.org/10.1016/S0010-938X(01)00100-7. DOI: https://doi.org/10.1016/S0010-938X(01)00100-7
Ali, S.A.; El-Shareef, A.M. ; Al-Ghamdi , R.F. ; Saeed, M.T. Corros. Sci. 2005, 47, 2659-2678. DOI: https://doi.org/10.1016/j.corsci.2004.11.007. DOI: https://doi.org/10.1016/j.corsci.2004.11.007
Lawson, J. in: Design and Analysis of Experiments with SAS. Chapman and Hall/CRC, New York, 2010. DOI: https://doi.org/10.1201/9781439882740
Yaghoobi, H.; Fereidoon, A. Polym. Compos. 2018, 39, E463-E479. DOI: https://doi.org/10.1002/pc.24596. DOI: https://doi.org/10.1002/pc.24596
Yaghoobi, H.; Fereidoon, A. J. Nat. Fibers. 2019, 16, 987-1005. DOI: https://doi.org/10.1080/15440478.2018.1447416. DOI: https://doi.org/10.1080/15440478.2018.1447416
Cobas, M.; Sanromán, M.A.; Pazos, M. Bioresour. Technol. 2014, 160, 166-174. DOI: https://doi.org/10.1016/j.biortech.2013.12.125. DOI: https://doi.org/10.1016/j.biortech.2013.12.125
Yazici, E.Y.; Deveci, H. Hydrometallurgy. 2013, 139, 30-38. DOI: https://doi.org/10.1016/j.hydromet.2013.06.018. DOI: https://doi.org/10.1016/j.hydromet.2013.06.018
Hicks,C.R. in: Fundamental concepts in the design of experiments. Holt, Rinehart and Winston,
New York, 1964.
Rossi, R.J. in: Applied biostatistics for the health sciences. John Wiley & Sons, 2022. DOI: https://doi.org/10.1002/9781119722717
Garba, Z.N.; Bello, I.; Galadima, A.; Lawal , A.Y. KIJMS. 2016, 2, 20-28. DOI: https://doi.org/10.1016/j.kijoms.2015.12.002. DOI: https://doi.org/10.1016/j.kijoms.2015.12.002
Anadebe, V.C.; Onukwuli, O.D. ; Omotioma, M.; Okafor, N.A. Mat. Chem. Phys. 2019, 233, 120-132. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.033. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.033
Ahamad, I.; Prasad, R. ; Quraishi, M. Corros. Sci. 2010, 52, 933-942. DOI: https://doi.org/10.1016/j.corsci.2009.11.016. DOI: https://doi.org/10.1016/j.corsci.2009.11.016
Boukhedena, W.; Deghboudj, S. J. Electrochem. Sci. Eng. 2021, 11, 227-239. DOI: https://doi.org/10.5599/jese.1050. DOI: https://doi.org/10.5599/jese.1050
Wang, H.-L.; Fan, H.-B.; Zheng, J.-S. Mat. Chem. Phys. 2003, 77, 655-661. DOI: https://doi.org/10.1016/S0254-0584(02)00123-2. DOI: https://doi.org/10.1016/S0254-0584(02)00123-2
Huang, W. ; Zhao, J. Colloids Surf. A. 2006, 278, 246-251. DOI:https://doi.org/10.1016/j.colsurfa.2005.12.028. DOI: https://doi.org/10.1016/j.colsurfa.2005.12.028
Fiala, A.; Boukhedena, W.; Lemallem, S.E.; Brahim Ladouani, H.; Allal, H. J. Bio- Tribo-Corros. 2019, 5, 1-17. DOI: https://doi.org/10.1007/s40735-019-0237-5. DOI: https://doi.org/10.1007/s40735-019-0237-5
Kosari, A.; Momeni, M.; Parvizi, R.; Zakeri, M.; Moayed, M.H.; Davoodi, A.; Eshghi, H. Corros. Sci. 2011, 53, 3058-3067. DOI: https://doi.org/10.1016/j.corsci.2011.05.009. DOI: https://doi.org/10.1016/j.corsci.2011.05.009
Umoren, S.A; Obot, I.B. Surf. Rev. Lett. 2008, 15, 277-286. DOI: https://doi.org/10.1142/S0218625X08011366. DOI: https://doi.org/10.1142/S0218625X08011366
Ebenso, E.E. Mat. Chem. Phys. 2003, 79, 58-70. DOI:https://doi.org/10.1016/S0254-0584(02)00446-7. DOI: https://doi.org/10.1016/S0254-0584(02)00446-7


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Wafia Boukhedena, Samir Deghboudj, Merzoug Benahmed, Hocine Laouer

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
