Experimental and Statistical Investigation of a Novel Green Inhibitor Ferula Lutea as Potential Corrosion Inhibiting Carbon Steel in an Acidic Medium

Authors

  • Wafia Boukhedena Larbi Tebessi university https://orcid.org/0000-0002-2372-0719
  • Samir Deghboudj Larbi Tebessi University
  • Merzoug Benahmed Laboratory of Bioactive Molecules and Applications
  • Hocine Laouer Ferhat Abbas University

DOI:

https://doi.org/10.29356/jmcs.v68i3.1891

Keywords:

Corrosion, carbon steel, Ferula lutea, weight loss measurements, surface response methodology

Abstract

Abstract. Carbon steel corrosion inhibition in the presence and absence of Ferula lutea butanolic extract (EBFL) as a corrosion inhibitor was investigated. This study focuses on the optimization of three main parameters: inhibitor concentration, immersion time, and temperature, on the corrosion inhibition of X2C30 carbon steel by EBFL based on the weight loss method. A composite-centered design (CCD) of response surface methodology (RSM) was employed to design the experiment utilizing Design Expert software in to assess the experimental factors that influence the process. Both the corrosion rate and the inhibition efficiency were modeled using logarithmic quadratic equations. The achieved correlation between the predicted and experimental values reveals the accuracy of the proposed models. This investigation proved that (RSM) is a useful tool to predict the optimal operating parameters of the examined inhibitor to mitigate carbon steel corrosion. Gravimetric and electrochemical measurements have indicated that extract (EBFL) exhibits corrosion inhibition properties of X2C30 carbon steel in 1 M hydrochloric acid medium.

 

Resumen. Se investigó la inhibición de la corrosión del acero al carbono en presencia y ausencia del extracto butanólico de Ferula lutea (EBFL) como inhibidor de la corrosión. Este estudio se centra en la optimización de tres parámetros principales: la concentración del inhibidor, el tiempo de inmersión y la temperatura, sobre la inhibición de la corrosión del acero al carbono X2C30 por el EBFL basándose en el método de la pérdida de peso. Se empleó un diseño centrado en el compuesto (CCD) de la metodología de superficie de respuesta (RSM) para diseñar el experimento utilizando el software Design Expert en para evaluar los factores experimentales que influyen en el proceso. Tanto la velocidad de corrosión como la eficiencia de inhibición se modelaron mediante ecuaciones cuadráticas logarítmicas. La correlación alcanzada entre los valores predichos y los experimentales revela la precisión de los modelos propuestos. Esta investigación demostró que (RSM) es una herramienta útil para predecir los parámetros operativos óptimos del inhibidor examinado para mitigar la corrosión del acero al carbono. Las mediciones gravimétricas y electroquímicas han indicado que el extracto (EBFL) presenta propiedades de inhibición de la corrosión del acero al carbono X2C30 en medio ácido clorhídrico 1 M.

Downloads

Download data is not yet available.

Author Biographies

Wafia Boukhedena, Larbi Tebessi university

Department of Science Materials

Mines Laboratory, Larbi Tebessi University

 

Samir Deghboudj, Larbi Tebessi University

Department of Mechanics

Mines Laboratory, Larbi Tebessi University

Hocine Laouer, Ferhat Abbas University

Laboratory for the Valorization of Natural Biological Resources,

References

Al-Moubaraki, A.H.; Obot, I.B. J. Saudi Chem. Soc. 2021, 25, 101370. DOI: https://doi.org/10.1016/j.jscs.2021.101370. DOI: https://doi.org/10.1016/j.jscs.2021.101370

Al-Janabi, Y.T. in: Corrosion Inhibitors in the Oil and Gas Industry, Wiley‐VCH Verlag GmbH & Co. KgaA, 2020. DOI: https://doi.org/10.1002/9783527822140.ch1. DOI: https://doi.org/10.1002/9783527822140.ch1

Trabanelli, G. Corrosion. 1991, 47, 410-419. DOI: https://doi.org/10.5006/1.3585271. DOI: https://doi.org/10.5006/1.3585271

Liu, J.; Yu, W.; Zhang, J.; Hu,S.; You, L.; Qiao, G. Appl. Surf. Sci. 2010, 256, 4729- 4733. DOI: https://doi.org/10.1016/j.apsusc.2010.02.082. DOI: https://doi.org/10.1016/j.apsusc.2010.02.082

Rice, J. Mechanics of Solids. Encyclopedia Britannica, 1993.

Musa, A.Y.; Khadom, A.A.; Kadhum, A.A.H.; Mohamad , A.B; Takriff, M.S. J. Taiwan Inst. Chem. Eng. 2010, 41, 126-128. DOI: https://doi.org/10.1016/j.jtice.2009.08.002. DOI: https://doi.org/10.1016/j.jtice.2009.08.002

Ameer, M.A. ; Fekry, A.M. Int. J. Hydrogen Energy. 2010, 35, 11387-11396. DOI: https://doi.org/10.1016/j.ijhydene.2010.07.071. DOI: https://doi.org/10.1016/j.ijhydene.2010.07.071

Khaled, K.F. Mater. Chem. Phys. 2011, 125, 427-433. 542. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.037. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.037

Balulescu, M. ; Herdan, J. J. Synth. Lubr. 1997, 14, 35-45. 544. DOI: https://doi.org/10.1002/jsl.3000140104. DOI: https://doi.org/10.1002/jsl.3000140104

Zakeri, A. ; Bahmani, E.; Rouh Aghdam, A.S. Corros. Commun. 2022, 5, 25-38. DOI: https://doi.org/10.1016/j.corcom.2022.03.002. DOI: https://doi.org/10.1016/j.corcom.2022.03.002

Yaro, A.S. ; Al-Jendeel, H. ; Khadom, A.A. Desalination. 2011, 270, 193-198. DOI: https://doi.org/10.1016/j.desal.2010.11.045. DOI: https://doi.org/10.1016/j.desal.2010.11.045

Hussin, M.H. ; Kassim, M.J. Mater. Chem. Phys. 2011, 125, 461-468. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.032. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.032

Valek, L.; Martinez, S. Materials Letters. 2007, 61, 148-151. DOI: https://doi.org/10.1016/j.matlet.2006.04.024. DOI: https://doi.org/10.1016/j.matlet.2006.04.024

Behpour, M.. Ghoreishi, S.M. ; Khayatkashani , M.; Soltani ,N. Mater. Chem. Phys. 2012, 131, 621-633. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.027. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.027

Soltani, N.; Tavakkoli, N.; Kashani, M.K.; Mosavizadeh, A.; Oguzie, E.E.; Jalali, M.R. J. Ind. Eng. Chem. 2014, 20, 3217-3227. DOI: https://doi.org/10.1016/j.jiec.2013.12.002. DOI: https://doi.org/10.1016/j.jiec.2013.12.002

Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. J. Ind. Eng. Chem. 2020, 84, 52-71. DOI: https://doi.org/10.1016/j.jiec.2019.12.019. DOI: https://doi.org/10.1016/j.jiec.2019.12.019

Fadhil, A.A.; Khadom, A.A.; Ahmed, S.K.; Liu, H.; Fu, C.; Mahood,H.B. Surf. Interfaces. 2020, 20, 100595. DOI:https://doi.org/10.1016/j.surfin.2020.100595. DOI: https://doi.org/10.1016/j.surfin.2020.100595

Wang, Q.; Tan,B.; Bao, H.; Xie , Y; Mou, Y.; Li, P.; Chen, D.; Shi ,Y.; Li, X.; Yang, W. Bioelectrochemistry. 2019, 128, 49-55. DOI: https://doi.org/10.1016/j.bioelechem.2019.03.001. DOI: https://doi.org/10.1016/j.bioelechem.2019.03.001

Chaubey, N.; Singh, V.K.; Savita ; Quraishi, M.A.; Ebenso, E.E. Int. J. Electrochem. Sci. 2015, 10, 504-518. DOI: https://doi.org/10.1016/S1452-3981(23)05009-5. DOI: https://doi.org/10.1016/S1452-3981(23)05009-5

Boukhedena, W. ; Deghboudj, S. ; Benahmed, M. ; Laouer, H. J. Mex. Chem. Soc. 2022, 66, 248-271. DOI: http://dx.doi.org/10.29356/jmcs.v66i2.1630. DOI: https://doi.org/10.29356/jmcs.v66i2.1630

Kalla, A. ; Benahmed, M. ; Djeddi,N. ; Akkal,S.; Laouer, H. Int J Ind Chem. 2016,7, 419-429. DOI: https://doi.org/10.1007/s40090-016-0094-8. DOI: https://doi.org/10.1007/s40090-016-0094-8

Anwar, B.; Khairunnisa, T. ; Sunarya, Y. Int. J. Corros. Scale Inhib. 2020, 9, 244-256.

Oguzie, E.E. Corros. Sci. 2007,49, 1527-1539.DOI: https://doi.org/10.1016/j.corsci.2006.08.009. DOI: https://doi.org/10.1016/j.corsci.2006.08.009

M’hiri, N.; Veys-Renaux, D.; Rocca, E.; Ioannou, I.; Boudhrioua,N.M.; Ghoul,M. Corros. Sci. 2016, 102, 55-62. DOI: https://doi.org/10.1016/j.corsci.2015.09.017. DOI: https://doi.org/10.1016/j.corsci.2015.09.017

Kosari, A.; Davoodi, A.; Moayed; M.H.; Gheshlaghi, R. Corros. 2015, 71, 819-827. DOI: https://doi.org/10.5006/1578. DOI: https://doi.org/10.5006/1578

Haris, N.I.N.; Sobri, S.; Kassim, N. Mater. Corros. 2019,70, 1111-1119. DOI: https://doi.org/10.1002/maco.201810653. DOI: https://doi.org/10.1002/maco.201810653

Okewale, A.; Adesina, O.; Akpeji, B. Nig. J. Basic Appl. Sci. 2019, 27, 47-56. DOI: 10.4314/njbas.v27i2.7. DOI: https://doi.org/10.4314/njbas.v27i2.7

Caglar, A., Sahan , T.; Selim Cogenli, M.; Yurtcan, A.B.; Aktas, N.; Kivrak, H. Int. J. Hydrogen Energy. 2018, 43, 11002-11011. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.208. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.208

Im, J.-K.; Cho,I.-H; Kim,S.-K.; Zoh, K.-D. Desal. 2012, 285, 306-314. DOI: https://doi.org/10.1016/j.desal.2011.10.018. DOI: https://doi.org/10.1016/j.desal.2011.10.018

Liu, Y.; Wang , J.; Zheng ,Y.; Wang, A. Chem. Eng. J. 2012, 184, 248-255. DOI: https://doi.org/10.1016/j.cej.2012.01.049. DOI: https://doi.org/10.1016/j.cej.2012.01.049

Akkal, S.; Louaar, S.; Benahmed, M.; Laouer, H.; Duddeck, H. Chem. Nat. Compd. 2010, 46, 719-721. DOI: https://doi.org/10.1007/s10600-010-9724-0. DOI: https://doi.org/10.1007/s10600-010-9724-0

Obi-Egbedi, N.O.; Essien, K.E.; Obot, I.B.; Ebenso, E.E. Int. J. Electrochem. Sci. 2011, 6, 913-930. DOI: https://doi.org/10.1016/S1452-3981(23)15045-0. DOI: https://doi.org/10.1016/S1452-3981(23)15045-0

Tinsson, W. in: Plans d'expérience: constructions et analyses statistiques. Springer Science & Business Media, 2010. DOI: https://doi.org/10.1007/978-3-642-11472-4_6

Mongomery, D. in: Montgomery: design and analysis of experiments. John Willy & Sons, 2017.

Ladurée, D.; Paquer, D.; Rioult, P. Rec. Trav. Chim. Pays-Bas. 1977, 96, 254-258. DOI: https://doi.org/10.1002/recl.19770961004. DOI: https://doi.org/10.1002/recl.19770961004

Obot, I. ; Obi-Egbedi, N. Curr. Appl. Phys, 2011, 11, 382-392.DOI: https://doi.org/10.1016/j.cap.2010.08.007. DOI: https://doi.org/10.1016/j.cap.2010.08.007

Abdallah, M. Corros. Sci. 2002, 44, 717-728. DOI: https://doi.org/10.1016/S0010-938X(01)00100-7. DOI: https://doi.org/10.1016/S0010-938X(01)00100-7

Ali, S.A.; El-Shareef, A.M. ; Al-Ghamdi , R.F. ; Saeed, M.T. Corros. Sci. 2005, 47, 2659-2678. DOI: https://doi.org/10.1016/j.corsci.2004.11.007. DOI: https://doi.org/10.1016/j.corsci.2004.11.007

Lawson, J. in: Design and Analysis of Experiments with SAS. Chapman and Hall/CRC, New York, 2010. DOI: https://doi.org/10.1201/9781439882740

Yaghoobi, H.; Fereidoon, A. Polym. Compos. 2018, 39, E463-E479. DOI: https://doi.org/10.1002/pc.24596. DOI: https://doi.org/10.1002/pc.24596

Yaghoobi, H.; Fereidoon, A. J. Nat. Fibers. 2019, 16, 987-1005. DOI: https://doi.org/10.1080/15440478.2018.1447416. DOI: https://doi.org/10.1080/15440478.2018.1447416

Cobas, M.; Sanromán, M.A.; Pazos, M. Bioresour. Technol. 2014, 160, 166-174. DOI: https://doi.org/10.1016/j.biortech.2013.12.125. DOI: https://doi.org/10.1016/j.biortech.2013.12.125

Yazici, E.Y.; Deveci, H. Hydrometallurgy. 2013, 139, 30-38. DOI: https://doi.org/10.1016/j.hydromet.2013.06.018. DOI: https://doi.org/10.1016/j.hydromet.2013.06.018

Hicks,C.R. in: Fundamental concepts in the design of experiments. Holt, Rinehart and Winston,

New York, 1964.

Rossi, R.J. in: Applied biostatistics for the health sciences. John Wiley & Sons, 2022. DOI: https://doi.org/10.1002/9781119722717

Garba, Z.N.; Bello, I.; Galadima, A.; Lawal , A.Y. KIJMS. 2016, 2, 20-28. DOI: https://doi.org/10.1016/j.kijoms.2015.12.002. DOI: https://doi.org/10.1016/j.kijoms.2015.12.002

Anadebe, V.C.; Onukwuli, O.D. ; Omotioma, M.; Okafor, N.A. Mat. Chem. Phys. 2019, 233, 120-132. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.033. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.033

Ahamad, I.; Prasad, R. ; Quraishi, M. Corros. Sci. 2010, 52, 933-942. DOI: https://doi.org/10.1016/j.corsci.2009.11.016. DOI: https://doi.org/10.1016/j.corsci.2009.11.016

Boukhedena, W.; Deghboudj, S. J. Electrochem. Sci. Eng. 2021, 11, 227-239. DOI: https://doi.org/10.5599/jese.1050. DOI: https://doi.org/10.5599/jese.1050

Wang, H.-L.; Fan, H.-B.; Zheng, J.-S. Mat. Chem. Phys. 2003, 77, 655-661. DOI: https://doi.org/10.1016/S0254-0584(02)00123-2. DOI: https://doi.org/10.1016/S0254-0584(02)00123-2

Huang, W. ; Zhao, J. Colloids Surf. A. 2006, 278, 246-251. DOI:https://doi.org/10.1016/j.colsurfa.2005.12.028. DOI: https://doi.org/10.1016/j.colsurfa.2005.12.028

Fiala, A.; Boukhedena, W.; Lemallem, S.E.; Brahim Ladouani, H.; Allal, H. J. Bio- Tribo-Corros. 2019, 5, 1-17. DOI: https://doi.org/10.1007/s40735-019-0237-5. DOI: https://doi.org/10.1007/s40735-019-0237-5

Kosari, A.; Momeni, M.; Parvizi, R.; Zakeri, M.; Moayed, M.H.; Davoodi, A.; Eshghi, H. Corros. Sci. 2011, 53, 3058-3067. DOI: https://doi.org/10.1016/j.corsci.2011.05.009. DOI: https://doi.org/10.1016/j.corsci.2011.05.009

Umoren, S.A; Obot, I.B. Surf. Rev. Lett. 2008, 15, 277-286. DOI: https://doi.org/10.1142/S0218625X08011366. DOI: https://doi.org/10.1142/S0218625X08011366

Ebenso, E.E. Mat. Chem. Phys. 2003, 79, 58-70. DOI:https://doi.org/10.1016/S0254-0584(02)00446-7. DOI: https://doi.org/10.1016/S0254-0584(02)00446-7

×

Downloads

Published

2024-04-23

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...