Six-Membered Heterocyclic Boronate Esters. Synthesis and Structural Analysis

Authors

  • Ariana León-Negrete Universidad Autónoma del Estado de Morelos
  • Raúl Villamil-Ramos Universidad Autónoma del Estado de Morelos
  • Paola Sánchez-Portillo Universidad Autónoma del Estado de Morelos
  • Arturo González-Hernández Universidad Autónoma del Estado de Morelos
  • Victor Barba Universidad Autónoma del Estado de Morelos https://orcid.org/0000-0002-4913-5008

DOI:

https://doi.org/10.29356/jmcs.v66i4.1718

Keywords:

Arylboronic acids, zwitterionic species, boronate esters, hydrogen bonds, crystallographic analysis

Abstract

Abstract. Nine heterocyclic zwitterionic boronate esters derived from carbonylphenylboronic acids and amino-diols are described. Compounds were prepared by direct condensation reaction between 3- or 4-formyl/acetylphenylboronic acids with 2-amino-2-methyl-1,3-propanediol (1a-1d) or serinol (2-amino-1,3-propanediol) (1e-1h). Compound 2e was obtained by reaction between 4-formylphenylboronic acid and serinol using a solvent mixture methanol/acetone, an aldol condensation reaction was observed. All compounds were characterized by common spectroscopic techniques such as FT-IR, mass spectrometry, and multinuclear 1H, 13C and 11B NMR spectroscopy. 11B NMR spectra showed signals between δ = 1.9 to 7.3 ppm for all compounds, indicating a tetracoordinated environment for the boron atoms in solution. X-ray diffraction analysis showed that boronates are contained in six-membered heterocycles, which have a chair conformation with -OH and -NH3+ substituents in syn disposition. The formation of channels in the crystal lattice that are filled with water and supported by hydrogen bonding interactions is noteworthy.

 

Resumen. En el presente trabajo se describen nueve ésteres de boro zwitteriónicos, derivados de ácidos cabonilfenilborónicos. Los compuestos fueron obtenidos mediante reacciones de condensación entre el ácido 3- o 4- formil/acetilfenilborónico con 2-amino-2-metil propanodiol (1a-1d) o serinol (1e-1h). El compuesto 2e se sintetizó a través del ácido 4-formilfenilborónico y serinol (2-amino-1,3-propanodiol) utilizando una mezcla de disolventes metanol/acetona, dando lugar a una reacción de condensación aldólica. Los compuestos fueron caracterizados por técnicas espectroscópicas como son FT-IR, espectrometría de masas y espectroscopia multinuclear de RMN 1H, 13C y 11B. El espectro RMN de 11B mostró señales anchas entre δ = 1.9 y 7.3 ppm para todos los compuestos, lo cual indica la presencia de átomos de boro tetracoordinados en solución. El análisis por difracción de rayos-X de monocristal mostró la formación de heterociclos de 6 miembros en conformación silla, con una marcada estereoselectividad en donde los grupos -OH y -NH3+ se encuentran en disposición syn. En la red cristalina, se observaron canales ocupados por moléculas de agua y soportados por enlaces de hidrógeno.

Downloads

Download data is not yet available.

Author Biographies

Ariana León-Negrete, Universidad Autónoma del Estado de Morelos

Centro de Investigaciones Químicas-IICBA

Raúl Villamil-Ramos, Universidad Autónoma del Estado de Morelos

Centro de Investigaciones Químicas-IICBA

Arturo González-Hernández, Universidad Autónoma del Estado de Morelos

Centro de Investigaciones Químicas-IICBA

Victor Barba, Universidad Autónoma del Estado de Morelos

Centro de Investigaciones Químicas-IICBA

References

Severin, K. Dalton Trans. 2009, 5254-5264. DOI: https://doi.org/10.1039/b902849h

Höpfl, H. Struct. Bonding. 2002, 103, 1-56. DOI: https://doi.org/10.1007/3-540-47808-6_1

Wang, W.; Gao, X.; Wang, B. Curr. Org. Chem. 2002, 6, 14, 1285-1317. DOI: https://doi.org/10.2174/1385272023373446

Springsteen, G.; Wang, B. Tetrahedron. 2002, 58, 26, 5291-5300. DOI: https://doi.org/10.1016/S0040-4020(02)00489-1

Marinez-Aguirre, M. A.; Villamil-Ramos, R.; Guerrero-Alvarez, J. A.; Yatsimirsky A. K. J. Org. Chem. 2013, 78, 10, 4674-4684. DOI: https://doi.org/10.1021/jo400617j

Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis Medicine and Materials, 2nd ed, Wiley-VCH, Weinheim, 2011. DOI: https://doi.org/10.1002/9783527639328

James, T. D; Philips, M. D; Shinkai, S. Boronic acids in Saccaride Recognition Recognition, The Royal Society of Chemistry, 2006. DOI: https://doi.org/10.1039/9781847557612

James, T.D., Shinkai, S. Artificial Receptors as Chemosensors for Carbohydrates. In: Penadés, S. (eds) Host-Guest Chemistry. Topics in Current Chemistry, Vol. 218, Ed., Springer, Berlin, Heidelberg, 2002. DOI: https://doi.org/10.1007/3-540-45010-6_6

James, T. D; Sandanayake, K. R. A; Shinkai, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 1910-1922. DOI: https://doi.org/10.1002/anie.199619101

Jin, S; Cheng, Y; Reid, S; Li, M; Wang, B. Med. Res. Rev. 2010, 30, 171-257. DOI: https://doi.org/10.1002/med.20155

Rowan, S. J; Cantrill, S. J; Cousins, G. R; Sanders, J. K; Stoddart, J. F. Angew. Chem. Int. Ed. 2002, 41, 898-952. DOI: https://doi.org/10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E

Corbett, P.T.; Leclaire, J.; Vial, L.; West, K.R.; Wietor, J.L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652-3711. DOI: https://doi.org/10.1021/cr020452p

Wilson, A; Gasparini, G; Matile, S. Chem. Soc. Rev. 2014, 43, 1948-1962. DOI: https://doi.org/10.1039/C3CS60342C

Cambre, J, N; Sumerlin, B. S. Polymer. 2011, 52, 4631-4643. DOI: https://doi.org/10.1016/j.polymer.2011.07.057

Dai, C; Cazares, L. H; Wang, L; Chu, Y; Wang, S. L; Troyer, D. A; Semmes, O. J; Drake, R; Wang, B. Chem. Commun. 2011, 47, 10338-10340. DOI: https://doi.org/10.1039/c1cc11814e

Kelly, A. M; Pérez-Fuertes, Y; Arimori, S; Bull, S. D; James, T. D. Org. Lett. 2006, 8, 1971-1974. DOI: https://doi.org/10.1021/ol0602351

Pérez-Fuertes, Y; Kelly, A. M; Johnson, A. L; Arimori, S; Bull, S. D; James, T. D. Org. Lett. 2006, 8, 609-612. DOI: https://doi.org/10.1021/ol052776g

Fujita, N; Shinkai, S; James, T. D. Chem. Asian J. 2008, 3, 1076-1091. DOI: https://doi.org/10.1002/asia.200800069

Nishiyabu, T; Kubo, Y; James, T. D; Fossey, J. S. Chem. Commun. 2011, 47, 1124-1150. DOI: https://doi.org/10.1039/C0CC02921A

Sun, X; Zhai, W; Fossey, J. S; James, T. D. Chem. Commun. 2016, 52, 3456-3469. DOI: https://doi.org/10.1039/C5CC08633G

Bull, S. D; Davidson, M. G; van den Elsen, J. M. H; Fossey, J. S; Jenkins, A. T. A; Jiang, Y.-B; Kubo, Y; Marken, F; Sakurai, K; Zhao, J; James, T, D. Acc. Chem. Res. 2013, 46, 312-326. DOI: https://doi.org/10.1021/ar300130w

Carboni, B; Monnier, L. Tetrahedron. 1999, 55, 1197-1248. DOI: https://doi.org/10.1016/S0040-4020(98)01103-X

Vargas-Díaz, G; Höpfl, H. J. Organomet. Chem. 2009, 694, 3660-3666. DOI: https://doi.org/10.1016/j.jorganchem.2009.07.004

Farfán, N; Höpfl, H; Barba, V; Ochoa, M. E; Santillan, R; Gómez, E; Gutiérrez, A. J. Organomet. Chem. 1999, 581, 70-81. DOI: https://doi.org/10.1016/S0022-328X(99)00054-6

Höpfl, H; Sánchez, M; Farfán, N; Barba, V. Can. J. Chem.1998, 76, 1352-1360. DOI: https://doi.org/10.1139/v98-181

Kubo, Y; Nishiyabu, R; James, T.D. Chem. Commun. 2015, 51, 2005-2020 DOI: https://doi.org/10.1039/C4CC07712A

Salazar-Mendoza, D; Cruz-Huerta, J;Höpfl, H; Ahuactzi, I. F; Sánchez, M. Cryst. Growth Des.2013, 13, 2441-2454. DOI: https://doi.org/10.1021/cg400144t

Sheepwash, E; Zhou, K; Scopelliti, R; Severin, K. Eur. J. Inorg. Chem. 2013, 2013, 2558-2563. DOI: https://doi.org/10.1002/ejic.201300084

Barba, V; Betanzos, I. J. Organomet. Chem. 2007, 692, 4903-4908. DOI: https://doi.org/10.1016/j.jorganchem.2007.07.035

Barba, V; Villamil, R; Luna, R; Godoy-Alcántar, C; Höpfl, H; Beltran, H. I; Zamudio-Rivera, L. S; Santillan, R; Farfán, N. Inorg. Chem. 2006, 45, 2553-2561. DOI: https://doi.org/10.1021/ic051850o

Sheepwash, E; Luisier, N; Krause, M. R; Noé, S; Kubik, S; Severin, K. Chem. Commun. 2012, 48, 7808-7810. DOI: https://doi.org/10.1039/c2cc34231f

Sheepawash, E; Kraml, V; Scopelliti, R; Sereda, O; Neels, A; Severin, K. Angew. Chem. Int. Ed. 2011, 50, 3034 –3037. DOI: https://doi.org/10.1002/anie.201007225

Christinat, N; Scopelliti, R; Severin, K. Angew. Chem. Int. Ed. 2008, 47, 1848-1852. DOI: https://doi.org/10.1002/anie.200705272

Nishimura, N; Yoza, K; Kobayashi, K. J. Am. Chem. Soc. 2010, 132, 777-790. DOI: https://doi.org/10.1021/ja9084918

Barba, V; Höpfl, H; Farfán, N; Santillan, R; Beltran, H. I; Zamudio-Rivera, L. S. Chem. Commun. 2004, 2834–2835. DOI: https://doi.org/10.1039/B410148K

Barba, V; Ramos, P; Jiménez, D; Rivera, A; Meneses, A. Inorg. Chim. Acta. 2013, 401, 30–37. DOI: https://doi.org/10.1016/j.ica.2013.02.033

Celis, N. A; Godoy-Alcántar, C; Guerrero-Álvarez, J; Barba, V. Eur. J. Inorg. Chem. 2014. 1477-1484. DOI: https://doi.org/10.1002/ejic.201301450

Gómez-Jaimes, G; Barba, V. J. Mol. Struct. 2014, 1075, 594-598. DOI: https://doi.org/10.1016/j.molstruc.2014.06.078

González-Hernández, A; Serrano-Melgar, G; Villamil-Ramos, R; Barba, V. Heteroat. Chem. 2017, 28, e21377. DOI: https://doi.org/10.1002/hc.21377

Herrera-España, A.D.; Campillo-Alvarado, G.; Román-Bravo, P.; Herrera-Ruiz, D.; Höpfl, H.; Morales-Rojas, H. Cryst. Growth Des. 2015, 15, 4, 1572-1576. DOI: https://doi.org/10.1021/acs.cgd.5b00219

Campillo-Alvarado, G.; Vargas-Olvera, E. C.; Höpfl, H.; Herrera-España, A. D.; Sánchez-Guadarrama, O.; Morales-Rojas, H.; MacGillivray, L. R.; Rodríguez-Molina, B.; Fárfan N.; Cryst. Growth Des. 2018, 18, 5, 2726-2743. DOI: https://doi.org/10.1021/acs.cgd.7b01368

Sanchez-Portillo, P; Arenaza-Corona, A; Hernandez-Ahuactzi, I. F; Barba, V. J. Mol. Struct. 2017, 1134, 435-443. DOI: https://doi.org/10.1016/j.molstruc.2017.01.013

Sanchez-Portillo, P; Barba, V. ChemistrySelect. 2017, 2, 11265-11272. DOI: https://doi.org/10.1002/slct.201702465

Sánchez-Portillo, P; Hernández-Sirio, A; Godoy-Alcantar, C; Lacroix, P. G; Agarwal, V; Santillán, R; Barba, V. Dyes Pigm. 2021, 186, 108991. DOI: https://doi.org/10.1016/j.dyepig.2020.108991

MestReNova, Nº de versión 12.0.0, 2017, Windows. Mexico: Mestrelab Research.

Dolomanov, V; Bourhis, L. J; Gildea, R. J; Howard, J. A. K; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341. DOI: https://doi.org/10.1107/S0021889808042726

Sheldrick, G. M. Acta. Cryst C. 2015, 71, 3-8. DOI: https://doi.org/10.1107/S2053229614024218

Edgington, P. R; McCabe, P; Macrae, C. F; Pidock, E; Shields, G. P; Taylor, R; Towler, M; Van De Streek, J. J. Appl. Crystallogr. 2006, 39, 453-457. DOI: https://doi.org/10.1107/S002188980600731X

Höpfl, H; Farfán, N. J. Organomet. Chem. 1997, 547, 71-77. DOI: https://doi.org/10.1016/S0022-328X(97)00183-6

Barba, V; Vargas, G; Gómez, E; Farfán, N. Inorg. Chim. Acta. 2000, 311, 133-137. DOI: https://doi.org/10.1016/S0020-1693(00)00282-6

Rivera, J. M; Rincón, S; Farfán, N; Santillan, R. J. Organomet. Chem. 2011, 696, 2420-2428. DOI: https://doi.org/10.1016/j.jorganchem.2011.03.006

Höpfl, H. J. Organomet. Chem. 1999, 581, 129-149. DOI: https://doi.org/10.1016/S0022-328X(99)00053-4

Rodríguez-Cuamatzi, P; Vargas-Díaz, G; Höpfl, H. Angew. Chem. Int. Ed. 2004, 43, 3041-3044. DOI: https://doi.org/10.1002/anie.200453957

Wang, J; Zheng, L.L; Li, C. J; Zheng, Y. Z; Tong, M. L. Cryst. Growth Des. 2006, 6, 357-359. DOI: https://doi.org/10.1021/cg050388f

Wang, Y. T; Tang, G. M; Liu, Z. M; Yi, X. H. Cryst. Growth Des. 2007, 7, 2272-2275. DOI: https://doi.org/10.1021/cg070487o

Natarajan, R; Charmant, J. P. H; Orpen, A. G; Davis, A. P. Angew. Chem. Int. Ed. 2010, 49, 5125-5129. DOI: https://doi.org/10.1002/anie.201002418

×

Downloads

Additional Files

Published

2022-10-01

Issue

Section

Regular Articles
x

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Loading...