Molecular Interactions in Binary Surfactant Solutions: Effect of Ionic Counterpart

Authors

  • Olga Kochkodan National University of Life and Environmental Sciences of Ukraine
  • Nataliya Slobodianiuk National University of Life and Environmental Sciences of Ukraine
  • Lidiya Kovshun National University of Life and Environmental Sciences of Ukraine
  • Olena Khyzhan National University of Life and Environmental Sciences of Ukraine

DOI:

https://doi.org/10.29356/jmcs.v64i3.1153

Keywords:

Triton X100, dodecylpyridinium bromide, sodium dodecyl sulfate, molecular interactions, mixed adsorption layer

Abstract

Abstract. The effect of intermolecular interactions on processes of micelle formation and adsorption in binary mixtures of non-ionic Triton X100 (TX100) with ionic sodium dodecyl sulfate and dodecylpyridinium bromide surfactants was studied. The ionic surfactants have identical hydrophobic alkyl chain and different hydrophilic groups. A feature of the used binary surfactant mixtures is that critical micelle concentrations and surface activity of the individual components are considerably different. A synergetic effect of decreasing of the surface tension was found in the surfactant mixtures. It was shown that the mixed adsorption layers and the micellar phases are enriched with the nonionic surfactant. For both sodium dodecyl sulfate/TX100 and dodecylpyridinium bromide/TX100 systems, the synergetic effects were most pronounced at a high molar fraction of the nonionic surfactants in the mixture. By using the Ruben-Rosen model, molecular interaction parameters in the mixed micelles βm, and in the adsorption layers βσ were evaluated. As was shown βm and βσ parameters to be notably higher for sodium dodecyl sulfate/TX100 mixture.

Resumen. Se estudia el efecto de las interacciones intermoleculares en el proceso de formación y adsorción de micelas en mezclas binarias de Triton X100 (TX100), no iónico, con dodecil sufato de sodio y bromuro de dodecil piridinio, ambos iónicos, como surfactantes. Los surfactantes iónicos tienen cadenas alquílicas hidrofóbicas idénticas y grupos hidrofílicos diferentes. Una característica de las mezclas binarias de surfactantes que se utilizaron es que las concentraciones micelares críticas y la actividad superficial de los componentes individuales es considerablemente diferente. Se encontró un efecto sinérgico de decremento de la tensión superficial en las mezclas de surfactantes. Se muestra que las capas mixtas de adsorción y las fases micelares están enriquecidas con surfactante no iónico. Tanto en el sistema dodecil sufato de sodio/TX100 como en el caso de bromuro de dodecil piridinio/TX100, los efectos sinérgicos fueron más pronunciados en las mezclas con fracciones molares altas de los surfactantes no iónicos. Utilizando el modelo de Ruben-Rosen, se evaluaron los parámetros de interacción molecular en las micelas mezcladas βm y en las capas de adsorción βσ. Se muestra que los parámteros βm son βσ son notablemente mayores en la mezcla de dodecil sufato de sodio/TX100.

Downloads

Download data is not yet available.

References

Rosen, M.J. Surfactants and Interfacial Phenomena. Wiley-Interscience, New York, 2004

Penfold, J.; Staples, E.J.; Tucker, I.; Thomas, R.K. Colloids Surf. A: Physicochem. Eng. Asp. 1999, 155, 11–26; DOI: 10.1021/la0002637

Rosen, M.J.; Zhou, Q. Langmuir. 2001, 17, 3532-3537. DOI: 10.1021/la001197b

Holland, P.; Rubingh, D., in Cationic Surfactants, Vol. 37, Holland, P.; Rubingh, D. (Eds.), Marcel Dekker, New York, 1991, 141-187.

Scamehorn, J.F., in: Phenomena in Mixed Surfactant Systems, ACS Symposium Series 311, Scamehorn J.F. (Ed.), ACS, Washington, DC, 1986, 1-27

Janczuk, B.; Zdziennicka, A.; Wojcik, W. Colloids Surf. A: Physicochem. Eng. Asp.2003, 220, 61-68. DOI: 10.1016/S0927-7757(03)00060-8

Hua X.Y., Rosen M.J. Synergism in binary mixtures of surfactants. 1. Theoretical analysis. J. Colloid Interf. Sci. 1982, 90, 212-219. DOI: https://doi.org/10.1016/0021-9797(82)90414-3

Zhou, Q.; Rosen, M. J. Langmuir 2003, 19, 4555-4562; DOI: 10.1021/la020789m

Szymczyk, K.; Janczuk, B. Colloids Surf. A: Physicochem. Eng. 2007, 293, 39–50. DOI: 10.1016/j.colsurfa.2006.07.006

Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Janczuk, B. Fluid Phase Equil. 2012, 318, 25–33. DOI:10.1016/j.fluid.2012.01.014

Wang, Y.; Marques, E.F.; Pereira, C.M. Thin Solid Films 2008, 516, 7458–7466. DOI: 10.1016/j.tsf.2008.03.029

Geng, T.; Zhang, C.; Jiang, Y.; Ju, H.; Wang, Y. J. Mol. Liquids 2017, 232, 36–44. DOI: http://dx.doi.org/10.1016/j.molliq.2017.02.055

Bakshi, M.S.; Singh, J.; Singh, K.; Kaur, G. Colloids Surf. A: Physicochem. Eng. Asp. 2004, 237, 61-71. DOI: 10.1016/j.colsurfa.2004.01.030

Kochkodan, O.; Antraptseva, N.; Kochkodan, V. Material Science Forum. 2018, 936, 8-13. DOI: https://doi.org/10.4028/www.scientific.net/MSF.936.8

Javadian, S.; Kakeman, J. J. Mol. Liquids 2017, 242, 115–128. DOI: https://dx.doi.org/10.1016/j.molliq.2017.06.117

Cirin, D.; Krstonosic, V.; Sazdani, D. Fluid Phase Equil. 2018, 473, 220-225, DOI: https://doi.org/10.1016/j.fluid.2018.06.009

Bagheri, A.; Paresa, K. RCS Adv. 2017, 7, 18151-18161. DOI: 10.1039/C6RA27382C

Le, T.N.; Phan, C.M.; Nguyen, A.V.; Ang. H.M. Minerals Eng. 2012, 39, 255–261. DOI: http://dx.doi.org/10.1016/j.mineng.2012.06.003

Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces (sixth ed). John Wiley & Sons, Inc., New York, 1997.

Clint J.H. Micellisation of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. 1975, 71, 1327-1334. DOI: 10.1039/F19757101327

Rosen, M. J.; Sultana, S.B. J. Colloid Interf. Sci. 2001, 238, 528-534. DOI: DOI:10.1006/jcis.2001.7537

Rusanov, A.I. Micelle formation in surfactants solutions. Khimiya, St. Petersburg, 1992

Moore, S.A.; Glenn, K.M.; MacDonald, A.M.; Palepu, R M. Colloid Polym. Sci. 2007, 285, 543-552. DOI: 10.1007/s00396-006-1604-6

Maeda, H.J. J. Colloid Interf. Sci. 1995, l72, 98-105.

DOI: https://doi.org/10.1006/jcis.1995.1230.

Goloub, T.P.; Pugh, R.J.; Zhmud, B.V. J. Colloid Interf. Sci. 2000, 229, 72-81. DOI: 10.1006/jcis.2000.6954

Rozen, M.J.; Zhao, F. . J. Colloid Interf. Sci. 1983, 95, 443-452. DOI: https://doi.org/10.1016/0021-9797(83)90204-7

Published

2020-07-01

Issue

Section

Regular Articles