Microwave Assisted, Silica Gel Mediated, Solvent Free, Michael-Addition of Aryl Methyl Ketones with Chalcones for the Synthesis of 1,3,5-triarylpentane-1,5-diones

Autores/as

DOI:

https://doi.org/10.29356/jmcs.v66i3.1706

Palabras clave:

1,5-diketone, Silica gel, Microwave, Michael addition, 1,5-dicarbonyl compounds

Resumen

Abstract. A series of symmetrical/unsymmetrical 1,3,5-Triarylpentane-1,5-diketone derivatives have been prudently synthesized via direct Michael addition of Chalocones with Aryl Methyl Ketones using microwave irradiation using Silica gel without any solvents. This method affords several advantages such as operational simplicity, short reaction time and easy work up by recrystallization and excellent yields.

 

Resumen. Se prepararó una serie de derivados simétricos y asimétricos de 1,3,5-triaril-1,5-pentanodiona, a través de la adición de Michael entre arilmetilcetonas y chalconas empelando microondas y gel de sílice con y sin disolvente. El método ofrece ventajas como simplicidad operativa, reducción de los tiempos de reacción y fácil procesamiento por recristaización, así como excelentes rendimientos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Chithiravel Rengasamy, Raja Serfoji Government College

Department of Chemistry

Rajaguru Kandasamy, Madurai Kamaraj University

Department of Organic Chemistry, School of Chemistry

Muthusubramanian Shanmugam, Madurai Kamaraj University

Department of Organic Chemistry, School of Chemistry

Citas

Yoshizawa, K.; Toyota, S.; Toda, F. Tetrahedron Lett. 2001, 42, 7983-7985. DOI: https://doi.org/10.1016/S0040-4039(01)01562-3

Toda, F.; Suzuki, T.; Higa, S. J. Chem. Soc., Perkin Trans. 1998, 1, 3521-3522. DOI: https://doi.org/10.1039/a805884i

Trost, B. M.; Semmelhack, M. F.; Flemming, I. Comprehensive Organic Synthesis, 1st ed., 1991, Vol. 4, 1.

Trost, B. M.; Heathcock, C. H.; Fleming, I. Comprehensive Organic Synthesis, 1st ed., 1991, Vol. 2, 133. DOI: https://doi.org/10.1016/B978-0-08-052349-1.00027-5

Leonard, J. Contemp. Org. Synth. 1994, 387-415. DOI: https://doi.org/10.1039/co9940100387

Leonard, J.; Díez-Barra, S.; Merino, S. Eur. J. Org. Chem. 1998, 2051-2061. DOI: https://doi.org/10.1002/(SICI)1099-0690(199810)1998:10<2051::AID-EJOC2051>3.3.CO;2-K

Yang, J.; Tao, X.; Yuan, C.; Yan, Y.; Wang, L.; Liu, Z.; Ren, Y.; Jiang, M. J. Am. Chem. Soc. 2005, 127, 3278-3279. DOI: https://doi.org/10.1021/ja043510s

Smith, N. M.; Raston, C. L.; Smith, B. C.; Sobolev, A. N. Green Chem. 2007, 9, 1185-1190. DOI: https://doi.org/10.1039/b700893g

Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109-2114. DOI: https://doi.org/10.1021/jo026550s

Varala, R.; Alam, M. M.; Adapa, S. R. Synlett. 2003, 720-722.

Alam, M. M.; Varala, R.; Adapa, S. Tetrahedron Lett. 2003, 44, 5115-5119. DOI: https://doi.org/10.1016/S0040-4039(03)01089-X

Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett., 2005, 46, 1721-1724. DOI: https://doi.org/10.1016/j.tetlet.2005.01.051

Banik, B. K.; Fernandez, M.; Alvarez, C. Tetrahedron Lett. 2005, 46, 2479-2482. DOI: https://doi.org/10.1016/j.tetlet.2005.02.044

Chu, C-Fa. Tetrahedron Lett. 2005, 46, 4971-4974. DOI: https://doi.org/10.1016/j.tetlet.2005.05.099

Liu, B.; Wang, J.; Pang, Y.; Ge, Z.; Li, R. Tetrahedron. 2014, 70, 9240-9244. DOI: https://doi.org/10.1016/j.tet.2014.10.009

Shvekhgeimer, G. A. Chem. Heterocycl. Compd. 1994, 30, 633-660. DOI: https://doi.org/10.1007/BF01166304

Cella, R.; Stefani, A. Tetrahedron. 2013, 65, 2619-2641. DOI: https://doi.org/10.1016/j.tet.2008.12.027

Mason, T. J. Chem. Soc. Rev. 1997, 26, 443-451. DOI: https://doi.org/10.1039/cs9972600443

Liju, W.; Ablajan, K.; Juni, F. Ultrason. Sonochem. 2015, 22, 113-118. DOI: https://doi.org/10.1016/j.ultsonch.2014.05.013

Rapson, W. S.; Robinson, R. J. Chem. Soc. 1935, 1285-1288. DOI: https://doi.org/10.1039/jr9350001285

Duhamel, P.; Hennequin, L.; Poirier, J. M.; Tavel, G.; Vottero, C. Tetrahedron. 1986, 42, 4777-4786. DOI: https://doi.org/10.1016/S0040-4020(01)82058-5

Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207-222. DOI: https://doi.org/10.1021/ja00885a021

Narasaka, K.; Soai, K.; Aikawa, Y.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1976, 49, 779-783. DOI: https://doi.org/10.1246/bcsj.49.779

Takahashi, A.; Yanai, H.; Taguchi, K. Chem. Commun. 2008, 2385-2387. DOI: https://doi.org/10.1039/b800815a

Stork, G.; Ganem, B. J. Am. Chem. Soc. 1973, 95, 6152-6153. DOI: https://doi.org/10.1021/ja00799a072

Brewster, J. H.; Eliel, E. L. InOrganic Reactions; Adams, R., Eds; John Wiley and Sons: New York, 1953, Vol. 7, 99197.

Constable, E. C.; Harverson, P.; Smith, D. R.; Whall, L. A. Tetrahedron. 1994, 50, 7799-7806. DOI: https://doi.org/10.1016/S0040-4020(01)85263-7

Onitsuka, S.; Jin, Y. Z.; Shaikh, A. C.; Furuno, H.; Inanaga, J. Molecules. 2012, 17, 11469-11483. DOI: https://doi.org/10.3390/molecules171011469

Kotsuki, H.; Shimanouchi, T. Tetrahedron Lett. 1996, 37, 1845-1848. DOI: https://doi.org/10.1016/0040-4039(96)00159-1

Shaabani, A.; Rahmati, A.; Rezayan, A. H.; Darvishi, M.; Badri, Z.; Sarvari, A. QSAR Comb. Sci. 2007, 26, 973-979. DOI: https://doi.org/10.1002/qsar.200620024

Chauhan, S. S.; Joshi, Y. C. Rasayan, J. Chem. 2008, 3, 475-480.

Jain, A. Kr.; Singla, R. K. Pharmacologyonline. 2011, 3, 244-253.

Guo, F.; Konkol, L. C.; Thomson, R. J. J. Am. Chem. Soc. 2011, 133, 18-20. DOI: https://doi.org/10.1021/ja108717r

Kim, S. H.; Lim, J. W.; Lim, C. H.; Kim, J. N. Bull. Korean Chem. Soc. 2012, 33, 620-624. DOI: https://doi.org/10.5012/bkcs.2012.33.2.620

Lee, B.; Kang, P.; Lee, K. H.; Cho, J.; Nam, W.; Lee, W. K.; Hur, N. H. Tetrahedron Lett. 2013, 54, 1384-1388. DOI: https://doi.org/10.1016/j.tetlet.2012.12.106

Smith, N. M.; Corry, B.: Swaminathan Iyer, K.; Norret, M.; Raston, C. L. Lab Chip 2009, 9, 2021-2025. DOI: https://doi.org/10.1039/b902986a

Ravindran, G.; Renganathan, N. G. Org. Commun. 2010, 3, 76-83.

Hussain, H. T.; Osama, M.; Hussain, W. Int. J. Pharm. Sci. Res. 2014, 5, 2084-2094.

Schmidt, Y.; Bidusenko, I.; Protsku, N.; Ushakov, I.; Trofimov, B. Eur. J. Org. Chem. 2013, 2453-2460. DOI: https://doi.org/10.1002/ejoc.201201700

Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563-2591. DOI: https://doi.org/10.1021/cr0509410

Candeias, N. R.; Branco, L. C.; Gois, P. M. P.; Afonso, C. A. M.; Trindade, A. F. Chemical Rev. 2009, 109, 2703-2802. DOI: https://doi.org/10.1021/cr800462w

Paul, N.; Shanmugam, M. J.; Muthusubramanian, S. Synth Commun. 2013, 43, 129-138. DOI: https://doi.org/10.1080/00397911.2011.593106

Nguyen, K.; Lupton, D. W.; Aust. J. Chem. 2017, 70, 436-441. DOI: https://doi.org/10.1071/CH16566

×

Descargas

Archivos adicionales

Publicado

2022-06-30

Número

Sección

Artículos
x

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Loading...