Car Wash Wastewater Treatment Using an Advanced Oxidation Process: A Rapid Technique for the COD Reduction of Water Pollutant Sources

Authors

  • Reza Davarnejad Arak University
  • Kasra Sarvmeili Arak University
  • Meysam Sabzehei Arak University

DOI:

https://doi.org/10.29356/jmcs.v63i4.786

Keywords:

Car wash wastewater, electro-fenton, optimization, water quality

Abstract

In this paper, a car wash wastewater (CW) was treated by an economic and eco-friendly method called electro-Fenton (EF) technique. The experiments were conducted to investigate the effect of five important variables including reaction time, current density, pH, H2O2/Fe2+ molar ratio and H2O2/Car wash wastewater (mL/L) on the quality characteristics of wastewater such as COD, BOD5, TOC, TSS, heavy metals, EC, surfactants and hardness. By applying Box-Behnken design (BBD) and response surface methodology (RSM), the optimum operating conditions were obtained. The optimum conditions for COD [as a main factor in a wastewater (according to the environmental protocols)] removal of 68.72% were experimentally found at reaction time of 75.80 min, current density of 58.81 mA/cm2, pH of 3.02, volume ratio of H2O2/CW of 1.62 mL/L, H2O2/Fe2+ molar ratio of 3.66.

Downloads

Download data is not yet available.

Author Biographies

Reza Davarnejad, Arak University

Head of Chemical Engineering Department,

Kasra Sarvmeili, Arak University

Chemical engineering department

Meysam Sabzehei, Arak University

Department of Chemical Engineering, Faculty of Engineering

References

Distefano, T.; Kelly, S. Ecological Economics 2017, 142, 130-147. DOI: https://doi.org/10.1016/j.ecolecon.2017.06.019

Zhan, Y.; Wan, X.: He, S.: Yang, Q.; He, Y. Chemical Engineering Journal 2018, 333, 132-145. DOI: https://doi.org/10.1016/j.cej.2017.09.147

Panizza, M.; Cerisola, G. Journal of Electroanalytical Chemistry 2010, 638, 28-32. DOI: https://doi.org/10.1016/j.jelechem.2009.10.025

Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D-H.; Yu, M.; Heo, J.; Yoon, Y. Chemical Engineering Journal 2018, 335, 896-914. DOI: https://doi.org/10.1016/j.cej.2017.11.044

Zietzschmann, F.; Stützer, C.; Jekel, M.; Water Research 2016, 92, 180-187. DOI: https://doi.org/10.1016/j.watres.2016.01.056

Zietzschmann, F.; Altmann, J.; Hannemann, C.; Jekel, M. Water Research 2015, 83, 52-60. DOI: https://doi.org/10.1016/j.watres.2015.06.017

Liu, C-H.; Wu, J-S.; Chiu, H-C.; Suen, S-Y.; Chu, K.H. Water Research 2007, 41, 1491-1500. DOI: https://doi.org/10.1016/j.watres.2007.01.023

Panizza, M.; Cerisola, G Journal of Electroanalytical Chemistry 2010, 638, 236-240. DOI: https://doi.org/10.1016/j.jelechem.2009.11.003

Zaneti, R.; Etchepare, R.; Rubio, J. Resources, Conservation and Recycling 2011, 55, 953-959. DOI: https://doi.org/10.1016/j.resconrec.2011.05.002

Pinto, A.C.S.; de Barros Grossi, L.; de Melo, R.A.C.; de Assis, T.M.; Ribeiro, V.M.; Amaral, M.C.S.; de Souza Figueiredo, K.C. Journal of Water Process Engineering 2017, 17, 143-148. DOI: https://doi.org/10.1016/j.jwpe.2017.03.012

Magnago, R.F.; Berselli, D.; Medeiros, P. Journal of Engineering Science and Technology 2018,13,838-50.

Lee, H.; Shoda, M. Journal of Hazardous Materials 2008, 153, 1314-1319. DOI: https://doi.org/10.1016/j.jhazmat.2007.09.097

Golbaz, S.; Jonidi Jafari, A.; Rezaei Kalantari, R. Iranian Journal of Health and Environment 2013, 5, 423-432.

Ghoneim, M.M., El-Desoky, H.S.; Zidan, N.M. Desalination 2011, 274, 22-30. DOI: https://doi.org/10.1016/j.desal.2011.01.062

Karimi, A.; Mahdizadeh, F.; Eskandarian, M. Chemical Industry and Chemical Engineering Quarterly/CICEQ 2012, 18, 89-94. DOI: https://doi.org/10.2298/CICEQ110722050K

Gençten, M.; Özcan, A. Chemosphere 2015, 136, 167-173. DOI: https://doi.org/10.1016/j.chemosphere.2015.04.101

Loaiza-Ambuludi, S.; Panizza, M.; Oturan, N.; Özcan, A.; Oturan, M.A. Journal of Electroanalytical Chemistry 2013, 702, 31-36. DOI: https://doi.org/10.1016/j.jelechem.2013.05.006

Khataee, A.; Vatanpour, V.; Ghadim, A.A. Journal of Hazardous Materials 2009, 161, 1225-1233. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.075

Mohanty, N.R.; Wei, I.W. Hazardous Waste and Hazardous Materials 1993, 10, 171-183. DOI: https://doi.org/10.1089/hwm.1993.10.171

Safarzadeh-Amiri, A.; Bolton, J.R.; Cater, S.R. Journal of Advanced Oxidation Technologies 1996, 1, 18-26. DOI: https://doi.org/10.1515/jaots-1996-0105

Atmaca, E. Journal of Hazardous Materials 2009, 163, 109-114. DOI: https://doi.org/10.1016/j.jhazmat.2008.06.067

Nidheesh, P.V.; Gandhimathi, R. Desalination 2012, 299, 1-15.

Rosales, E.; Pazos, M.; Sanroman, M.A. Chemical Engineering & Technology 2012, 35, 609-617. DOI: https://doi.org/10.1002/ceat.201100321

Davarnejad, R.; Sabzehei, M. Separation Science and Technology 2018, 4,1-0.

Zhang, H.; Jin Choi, H.; Canazo, P.; Huang, C.P. Journal of Hazardous Materials 2009, 161, 1306-1312. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.126

Virkutyte, J.; Rokhina, E.; Jegatheesan, V. Bioresource Technology 2009, 101, 1440-1446. DOI: https://doi.org/10.1016/j.biortech.2009.10.041

Kabuk, H.A.; ?lhan, F.; Avsar, Y.; Kurt, U.; Apaydin, O.; Gonullu, M.T. CLEAN – Soil, Air, Water 2013, 42, 571-577. DOI: https://doi.org/10.1002/clen.201300086

Davarnejad, R.; Nikseresht, M. Journal of Electroanalytical Chemistry 2016, 775, 364-373. DOI: https://doi.org/10.1016/j.jelechem.2016.06.016

El-Ghenymy, A.; Garcia-Segura, S.; Rodríguez, R.M.; Brillas, E.; El Begrani, M.S.; Abdelouahid, B.A. Journal of Hazardous Materials 2012, 221-222, 288-297. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.053

Davarnejad, R.; Mohammadi, M.; Ismail, A.F. Journal of Water Process Engineering 2014, 3, 18-25. DOI: https://doi.org/10.1016/j.jwpe.2014.08.002

Ghaemi, N.; Zereshki, S.; Heidari, S. Process Safety and Environmental Protection 2017, 111,475-90. DOI: https://doi.org/10.1016/j.psep.2017.08.011

Körbahti, B.K.; Akta?, N.; Tanyolaç, A. Journal of Hazardous Materials 2007, 148, 83-90. DOI: https://doi.org/10.1016/j.jhazmat.2007.02.005

Babuponnusami, A.; Muthukumar, K. Separation and Purification Technology 2012, 98, 130-135. DOI: https://doi.org/10.1016/j.seppur.2012.04.034

Jiang, C-c.; Zhang, J-f. Journal of Zhejiang University-SCIENCE A 2007, 8, 1118-1125. DOI: https://doi.org/10.1631/jzus.2007.A1118

Nidheesh, P.; Gandhimathi, R. Desalination 2012, 299, 1-15. DOI: https://doi.org/10.1016/j.desal.2012.05.011

Mohajeri, S.; Aziz, H.A.; Isa, M.H.; Zahed, M.A.; Adlan, M.N. Journal of Hazardous Materials 2010, 176, 749-758. DOI: https://doi.org/10.1016/j.jhazmat.2009.11.099

Badawy, M.I.; Ali, M. Journal of Hazardous Materials 2006, 136, 961-966. DOI: https://doi.org/10.1016/j.jhazmat.2006.01.042

Babuponnusami, A.; Muthukumar, K. CLEAN – Soil, Air, Water 2011, 39, 142-147. DOI: https://doi.org/10.1002/clen.201000072

Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Journal of Physical and Chemical Reference Data 1998, 17, 513-886. DOI: https://doi.org/10.1063/1.555805

Davarnejad, R.; Sahraei, A. Desalination and Water Treatment 2016, 57, 9622-9634. DOI: https://doi.org/10.1080/19443994.2015.1030776

Moussavi, G.; Aqanaghad, M. Sustain Environ Res 2015, 25, 249-254. DOI: https://doi.org/10.1007/s11609-016-0296-0

He, J.; Yang, X.; Men, B.; Yu, L.; Wang, D. Journal of Molecular Catalysis A: Chemical 2015, 408, 179-188. DOI: https://doi.org/10.1016/j.molcata.2015.07.030

×

Published

2019-12-09

Issue

Section

Regular Articles
x

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.

Loading...