Structure - Function Analysis of the Cytochromes P450, Responsible for Phenprocoumon Metabolism
DOI:
https://doi.org/10.29356/jmcs.v61i4.466Keywords:
CYP450, CYP2C9, Structure-Function Relationship, Molecular Mechanics, Phenprocoumon, Docking, regioselectivityAbstract
Phenprocoumon is an oral anticoagulant used for the prophylaxis and treatment of disorders due to thrombosis. However, if oral anticoagulants are not metabolized, they could exacerbate and generate clotting disorders. Phenprocoumon is metabolized by at least four hepatic enzymes members of the cytochromes P450 family; three of which are members of the same subfamily (CYP2C9, CYP2C19 and CYP2C8). Even with too many differences in their amino acid sequence and tertiary structures, CYP2C9 and CYP3A4 have the most similar metabolic activity on phenprocoumon. In this study, we were able to explain these activity similarities using force fields of molecular mechanics for geometry and energy optimization in combination with docking techniques. The results were compared to study Structure-Function Relationships (SFR) of our four target proteins (CYP2C9, CYP2C19, CYP2C8 and CYP3A4). The study and prediction of metabolism and sites of metabolisms of drugs was successfully performed using this approach.Downloads
References
Gonzalez, F. J.; Tukey, R. H., in: The Pharmacological Basis of Therapeutics, 11 Ed., McGraw-Hill, New York, 2006, 71-91.
Wöll, S.; Kim, S. H.; Greten, H. J.; Efferth, T. Nat Prod Bioprospect, 2013, 1-7.
Brodie, E. D.; Ridenhour, B. J.; Brodie, E. D. Evolution, 2002, 56, 2067-2082. DOI: https://doi.org/10.1111/j.0014-3820.2002.tb00132.x
Handschin, C.; Meyer, U. A. Pharmacol. Rev, 2003, 55, 649-673. DOI: https://doi.org/10.1124/pr.55.4.2
Bello, M.; Mendieta-Wejebe, J. E.; Correa-Basurto, J. Biochem Pharmacol, 2014, 90, 145-158. DOI: https://doi.org/10.1016/j.bcp.2014.04.016
Mendieta-Wejebe, E. J.; Correa-Basurto, J.; Garcia-Segovia, E. M.; Ceballos-Cancino, G.; Rosales-Hernandez, M. C. Curr Drug Metab, 2011, 12, 533-548. DOI: https://doi.org/10.2174/138920011795713670
Mendieta-Wejebe, J. E.; Rosales-Hernández, M. C.; Rios, H.; Trujillo-Ferrara, J.; López-Pérez, G.; Tamay-Cach, F.; Ramos-Morales, R.; Correa-Basurto, J. J Mol Model, 2008, 14, 537-545. DOI: https://doi.org/10.1007/s00894-008-0294-z
Rosales-Hernández, M. C.; Mendieta-Wejebe, J. E.; Trujillo-Ferrara, J. G.; Correa-Basurto, V. Eur. J. Med. Chem, 2010, 45, 4845-4855. DOI: https://doi.org/10.1016/j.ejmech.2010.07.055
Vedani, A.; Smiesko, M. Altern Lab Anim, 2009, 37, 477-496. DOI: https://doi.org/10.1177/026119290903700506
Vedani, A.; Dobler M.; Smieško, M. Toxicol Appl Pharmacol, 2012, 261, 142-153. DOI: https://doi.org/10.1016/j.taap.2012.03.018
Zaretzki, J.; Bergeron, C.; Rydberg, P.; Huang, T. W.; Bennett, K. P.; Breneman, C. M. J. Chem. Inf. Model, 2011, 51, 1667-1689. DOI: https://doi.org/10.1021/ci2000488
Martínez-Sotres C.; Rutiaga-Quiñones J. G.; Herrera-Bucio, R.; Gallo, M.; López-Albarrán, P. Wood Sci. Technol, 2015, 49, 857-868. DOI: https://doi.org/10.1007/s00226-015-0734-8
Wester, M. R.; Johnson, E. F.; Marques-Soares, C.; Dijols, S.; Dansette, P. M.; Mansuy, D.; Stout, C. D. Biochemistry, 2003, 42, 9335-9345. DOI: https://doi.org/10.1021/bi034556l
Scott, E. E.; White, M. A.; He, Y. A.; Johnson, E. F.; Stout, C. D.; Halpert, J. R. J. Biol. Chem, 2004, 279, 27294-27301. DOI: https://doi.org/10.1074/jbc.M403349200
Van Booven, D.; Marsh, S.; McLeod, H.; Carrillo, M. W.; Sangkuhl, K.; Klein, T. E.; Altman, R. B. Pharmacogenet Genomics, 2010, 20, 277. DOI: https://doi.org/10.1097/FPC.0b013e3283349e84
Pirmohamed, M.; Park, B. K. Toxicology, 2003, 192, 23-32. DOI: https://doi.org/10.1016/S0300-483X(03)00247-6
Lee, C. R.; Goldstein, J. A.; Pieper, J. A. Pharmacogenet Genomics, 2002, 12, 251-263. DOI: https://doi.org/10.1097/00008571-200204000-00010
Ufer, M.; Kammerer, B.; Kahlich, R.; Kirchheiner, J.; Yasar, Ü.; Brockmöller, J.; Rane, A. Xenobiotica, 2004, 34, 847-859. DOI: https://doi.org/10.1080/00498250400009197
Hirsh, J; Dalen, J. E.; Anderson, D. R.; Poller, L.; Bussey, H.; Ansell, J.; Deykin, D. Chest, 2001, 119, 8S-21S. DOI: https://doi.org/10.1378/chest.119.1_suppl.8S
He, M.; Korzekwa, K. R.; Jones, J. P.; Rettie, A. E.; Trager, W. F. Arch. Biochem. Biophys, 1999, 372, 16-28. DOI: https://doi.org/10.1006/abbi.1999.1468
Remko, M.; Broer, R.; Remková, A. RSC Adv., 2014, 4, 8072-8084. DOI: https://doi.org/10.1039/C3RA42347F
van Leeuwen, Y. in Towards Improvement, Ed. Gildeprint, 2009.
Ufer, M.; Svensson, J. O.; Krausz, K. W.; Gelboin, H. V.; Rane, A.; Tybring, G. Eur. J. Clin. Pharmacol, 2004, 60, 173-182. DOI: https://doi.org/10.1007/s00228-004-0740-5
Kammerer, B.; Kahlich, R.; Ufer, M.; Schenkel, A.; Laufer, S.; Gleiter, C. H. Anal Bioanal Chem, 2005, 383, 909-917. DOI: https://doi.org/10.1007/s00216-005-0113-7
Kirchheiner, J.; Ufer, M.; Walter, E. C.; Kammerer, B.; Kahlich, R.; Meisel, C.; Schwab, M.; Gleiter, C. H.; Rane, A.; Roots, I.; Brockmöller, J. Pharmacogenet Genomics, 2004, 14, 19-26. DOI: https://doi.org/10.1097/00008571-200401000-00002
Kirchmair, J.; Williamson, M. J.; Tyzack, J. D.; Tan, L.; Bond, P. J.; Bender, A.; Glen, R. C. J. Chem. Inf. Model, 2012, 52, 617-648. DOI: https://doi.org/10.1021/ci200542m
Nabuurs, S. B.; Wagener, M.; De Vlieg, J. J Med Chem, 2007, 50, 6507-6518. DOI: https://doi.org/10.1021/jm070593p
Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I.N.; Bourne, P. E. Nucleic Acids Res, 2000, 28, 235-242. DOI: https://doi.org/10.1093/nar/28.1.235
Poulos, T. L.; Finzel, B. C.; Howard, A. J. J Mol Bio, 1987, 195, 87-700. DOI: https://doi.org/10.1016/0022-2836(87)90190-2
Raag, R.; Poulos, T. L. Biochemistry, 1989, 28, 7586-7592. DOI: https://doi.org/10.1021/bi00445a013
Wester, M. R.; Yano, J. K.; Schoch, G. A.; Yang, C.; Griffin, K. J.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2004, 279, 35630-35637. DOI: https://doi.org/10.1074/jbc.M405427200
Yano, J. K.; Wester, M. R.; Schoch, G. A.; Griffin, K. J.; Stout, C. D.; Johnson, E. F., J Biol Chem, 2004, 279, 38091-38094. DOI: https://doi.org/10.1074/jbc.C400293200
Reynald, R. L.; Sansen, S.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2012, 287, 44581-44591. DOI: https://doi.org/10.1074/jbc.M112.424895
Schoch, G. A.; Yano, J. K.; Sansen, S.; Dansette, P. M.; Stout, C. D.; Johnson, E. F., J Biol Chem, 2008, 285, 17227-17237. DOI: https://doi.org/10.1074/jbc.M802180200
Pedretti, A.; Villa, L.; Vistoli, G. J Mol Graph Model, 2002, 21, 47-49. DOI: https://doi.org/10.1016/S1093-3263(02)00123-7
Williams, P. A.; Cosme, J.; Ward, A.; Angove, H. C.; Vinkovi?, D. M.; Jhoti, H. Nature, 2003, 424, 464-468. DOI: https://doi.org/10.1038/nature01862
Gasteiger, J.; Marsili, M. Tetrahedron, 1980, 36, 3219-3228. DOI: https://doi.org/10.1016/0040-4020(80)80168-2
Hall, T. A. Nucleic Acids Symp Ser, 1999, 41, 95-98.
Humphrey, W.; Dalke, A.; Schulten, K. J Mol Graph M, 1996,
, 33-38.
Studio, D. , version 4.0, San Diego: Accelrys. Inc, 2009.
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem, 2009, 30, 2785-2791. DOI: https://doi.org/10.1002/jcc.21256
Vedani, A.; Huhta, D. W. J. Am. Chem. Soc, 1990, 112, 4759-4767. DOI: https://doi.org/10.1021/ja00168a021
Sirim, D.; Widmann, M.; Wagner, F.; Pleiss, J. BMC Struct. Biol, 2010, 10, 34-46. DOI: https://doi.org/10.1186/1472-6807-10-34
Schoch, G. A.; Yano, J. K.; Wester, M. R.; Griffin, K. J.; Stout, C. D.; Johnson, E. F. J Biol Chem, 2004, 279, 9497-9503. DOI: https://doi.org/10.1074/jbc.M312516200
Whitford, D. Proteins: structure and function, Sussex: John Wiley & Sons, 2013.
Kaminsky, L. S.; Zhang, Z. Y. Pharmacol. Ther, 1997, 73, 67-74. DOI: https://doi.org/10.1016/S0163-7258(96)00140-4
Ufer, M. Clin Pharmacokinet, 2005, 44, 1227-1246. DOI: https://doi.org/10.2165/00003088-200544120-00003
Ortiz de Montellano P. R. Chem Rev, 2010 110, 932-948. DOI: https://doi.org/10.1021/cr9002193
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
