APTES-Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide
DOI:
https://doi.org/10.29356/jmcs.v61i4.457Keywords:
APTES, CO2 adsorption, functionalization, SBA-15, si-lanol ratioAbstract
SBA-15 materials were functionalized with amino groups, APTES. The functionalization was carried out with ethanol or toluene, in air or nitrogen atmosphere. Texture and silanol ratio of functionalized materials were characterized by CO2 adsorption, N2 adsorption, SEM, TEM, and NMR. The results of this work indicates that functionalization in toluene is better than functionalization in ethanol, in order to anchor the largest number of APTES molecules on SBA-15 surface. For the same purpose, during functionalization process, the use of nitrogen atmosphere is better than the use of air atmosphere.Downloads
References
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120 (24), 6024–6036. DOI: https://doi.org/10.1021/ja974025i
Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D.; Barbara, S. Chem. Mater 2000, 12, 275–279. DOI: https://doi.org/10.1021/cm9911363
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279 (5350), 548–552. DOI: https://doi.org/10.1126/science.279.5350.548
Liu, Y.; Lee, J. Y.; Hong, L. Journal of Power Sources 2002, 109, 507–514. DOI: https://doi.org/10.1016/S0378-7753(02)00167-2
Wang, X. L.; Mei, A.; Li, M.; Lin, Y.; Nan, C. W. Solid State Ionics 2006, 177 (15–16), 1287–1291. DOI: https://doi.org/10.1016/j.ssi.2006.06.016
Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Perez, E. S. J. Mater. Chem. A 2013, 1 (6), 1956–1962. DOI: https://doi.org/10.1039/c2ta01343f
Calleja, G.; Sanz, R.; Arencibia, A.; Sanz-Pérez, E. S. Top. Catal. 2011, 54, 135–145. DOI: https://doi.org/10.1007/s11244-011-9652-7
Wei, Y.; Li, X.; Zhang, R.; Liu, Y.; Wang, W.; Ling, Y.; Mohamed, A.; Zhao, D. Nat. Publ. Gr. 2016, No. January, 1–11.
Wang, L.; Ma, L.; Wang, A.; Liu, Q.; Zhang, T. Chinese J. Catal. 2007, 28 (9), 805–810. DOI: https://doi.org/10.1016/S1872-2067(07)60066-7
Liu, X.; Zhou, L.; Fu, X.; Sun, Y.; Su, W.; Zhou, Y. Chemical Engineering Science 2007, 62, 1101–1110. DOI: https://doi.org/10.1016/j.ces.2006.11.005
Kim, S. N.; Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mater 2008, 115 (3), 497–503. DOI: https://doi.org/10.1016/j.micromeso.2008.02.025
Hiyoshi, N.; Yogo, K.; Yashima, T. Microporous Mesoporous Mater 2005, 84 (1–3), 357–365. DOI: https://doi.org/10.1016/j.micromeso.2005.06.010
Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B 2000, 104 (48), 11465–11471. DOI: https://doi.org/10.1021/jp002597a
Thielemann, J.; Girgsdies, F.; Schlögl, R.; Hess, C. Beilstein J. Nanotechnol. 2011, 2 (1), 110–118. DOI: https://doi.org/10.3762/bjnano.2.13
Ojeda-López, R.; Pérez-Hermosillo, I. J.; Esparza-Schulz, J. M.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. Adsorption 2015, 21 (8), 659–669. DOI: https://doi.org/10.1007/s10450-015-9716-2
Ojeda-López, R.; Pérez-Hermosillo, I. J.; Esparza-Schulz, J. M.; Domínguez-Ortiz, A. Av. en Química 2014, 9 (1), 21–28. 17. Soler-Illia, G. J. a a; Azzaroni, O. Chem. Soc. Rev. 2011, 40 (2), 1107–1150.
Melero, J. a.; Stucky, G. D.; van Grieken, R.; Morales, G. Journal of Materials Chemistry 2002, pp 1664–1670. DOI: https://doi.org/10.1039/b110598c
Chong, A. S. M.; Zhao, X. S. J. Phys. Chem. B 2003, 107 (46), 12650–12657. DOI: https://doi.org/10.1021/jp035877+
Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E. S. Microporous Mesoporous Mater 2012, 158, 309–317. DOI: https://doi.org/10.1016/j.micromeso.2012.03.053
Lombardo, M. V; Videla, M.; Calvo, A.; Requejo, F. G.; Soler-illia, G. J. A. A. J. Hazard. Mater. 2012, 223–224, 53–62. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.049
Szegedi, A.; Popova, M.; Goshev, I.; Mihály, J. J. Solid State Chem. 2011, 184 (5), 1201–1207. DOI: https://doi.org/10.1016/j.jssc.2011.03.005
Moritz, M.; ?aniecki, M. Appl. Surf. Sci. 2012, 258 (19), 7523–7529. DOI: https://doi.org/10.1016/j.apsusc.2012.04.076
Lombardo, M. V. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. España. 2013.
Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60 (1), 309–319. DOI: https://doi.org/10.1021/ja01269a023
Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B 2001, 105 (29), 6817–6823. DOI: https://doi.org/10.1021/jp010621u
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. DOI: https://doi.org/10.1515/pac-2014-1117
Pollock, R. A.; Walsh, B. R.; Fry, J.; Ghampson, I. T.; Melnichenko, Y. B.; Kaiser, H.; Pynn, R.; Desisto, W. J.; Wheeler, M. C.; Frederick, B. G. Chem. Mater 2011, 23 (17), 3828–3840. DOI: https://doi.org/10.1021/cm200707y
Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122 (48), 11925–11933. DOI: https://doi.org/10.1021/ja002245h
Galarneau, A.; Cambon, H.; Di Renzo, F.; Fajula, F. Langmuir 2001, 17 (26), 8328–8335. DOI: https://doi.org/10.1021/la0105477
Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2002, 27 (1), 73–79. DOI: https://doi.org/10.1039/b207378c
Savino, R.; Casadonte, F.; Terracciano, R. Molecules 2011, 16 (7), 5938–5962. DOI: https://doi.org/10.3390/molecules16075938
Ide, M.; El-Roz, M.; Canck, E. De; Vicente, A.; Planckaert, T.; Bogaerts, T.; Driessche, I. Van; Lynen, F.; Speybroeck, V. Van; Thybault-Starzyk, F.; Voort, P. Van Der. Phys. Chem. Chem. Phys. 2012, 15 (2), 642–650. DOI: https://doi.org/10.1039/C2CP42811C
Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109 (5), 1763–1769.
Rahman, I. A.; Jafarzadeh, M.; Sipaut, C. S. Ceram. Int. 2009, 35 (5), 1883–1888. DOI: https://doi.org/10.1016/j.ceramint.2008.10.028
Colilla, M.; Izquierdo-Barba, I.; Sánchez-Salcedo, S.; Fierro, J. L. G.; Hueso, J. L.; Vallet-Regí, M. Chem. Mater 2010, 22 (23), 6459–6466. DOI: https://doi.org/10.1021/cm102827y
Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109 (5), 1763–1769. DOI: https://doi.org/10.1021/jp045798d
Sanz-Pérez, E. S.; Olivares-Marín, M.; Arencibia, A.; Sanz, R.; Calleja, G.; Maroto-Valer, M. M. Int. J. Greenh. Gas Control 2013, 17, 366–375. DOI: https://doi.org/10.1016/j.ijggc.2013.05.011
Knowles, G. P.; Graham, J. V; Delaney, S. W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435–1448. DOI: https://doi.org/10.1016/j.fuproc.2005.01.014
Ünveren, E. E.; Monkul, B. Ö.; Sar?o?lan, ?.; Karademir, N.; Alper, E. Petroleum 2016, 1-14.
Vilarrasa-García, E.; Cecilia, J. A.; Santos, S. M. L.; Cavalcante, C. L.; Jiménez-Jiménez, J.; Azevedo, D. C. S.; Rodríguez-Castellón, E. Microporous Mesoporous Mater 2014, 187, 125–134. DOI: https://doi.org/10.1016/j.micromeso.2013.12.023
Danon, A.; Stair, P. C.; Weitz, E. J. Phys. Chem. C 2011, 115 (23), 11540–11549. DOI: https://doi.org/10.1021/jp200914v
Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468–473. DOI: https://doi.org/10.1021/ef020176h
Yuan, M. H.; Wang, L.; Yang, R. T. Langmuir 2014, 30 (27), 8124–8130. DOI: https://doi.org/10.1021/la501794z
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
