APTES-Functionalization of SBA-15 Using Ethanol or Toluene: Textural Characterization and Sorption Performance of Carbon Dioxide

Authors

  • Laura Munguía-Cortés Universidad Autónoma Metropolitana–Iztapalapa
  • Isaac Pérez-Hermosillo Universidad Autónoma Metropolitana–Iztapalapa
  • Reyna Ojeda-López Universidad Autónoma Metropolitana–Iztapalapa
  • Juan Marcos Esparza-Schulz Universidad Autónoma Metropolitana–Iztapalapa
  • Carlos Felipe-Mendoza Instituto Politécnico Nacional
  • Adrián Cervantes-Uribe Universidad Juárez Autónoma de Tabasco
  • Armando Domínguez-Ortiz Universidad Autónoma Metropolitana–Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v61i4.457

Keywords:

APTES, CO2 adsorption, functionalization, SBA-15, si-lanol ratio

Abstract

SBA-15 materials were functionalized with amino groups, APTES. The functionalization was carried out with ethanol or toluene, in air or nitrogen atmosphere. Texture and silanol ratio of functionalized materials were characterized by CO2 adsorption, N2 adsorption, SEM, TEM, and NMR. The results of this work indicates that functionalization in toluene is better than functionalization in ethanol, in order to anchor the largest number of APTES molecules on SBA-15 surface. For the same purpose, during functionalization process, the use of nitrogen atmosphere is better than the use of air atmosphere.

Downloads

Download data is not yet available.

Author Biographies

Laura Munguía-Cortés, Universidad Autónoma Metropolitana–Iztapalapa

Departamento de Química, Fisicoquímica de Superficies.

Isaac Pérez-Hermosillo, Universidad Autónoma Metropolitana–Iztapalapa

Departamento de Química, Fisicoquímica de Superficies.

Reyna Ojeda-López, Universidad Autónoma Metropolitana–Iztapalapa

Departamento de Química, Fisicoquímica de Superficies.

Juan Marcos Esparza-Schulz, Universidad Autónoma Metropolitana–Iztapalapa

Departamento de Química, Fisicoquímica de Superficies.

Carlos Felipe-Mendoza, Instituto Politécnico Nacional

Departamento de Biociencias e Ingeniería, CIIEMAD.

Adrián Cervantes-Uribe, Universidad Juárez Autónoma de Tabasco

División Académica de Ciencias Básicas, DACB.

Armando Domínguez-Ortiz, Universidad Autónoma Metropolitana–Iztapalapa

Departamento de Química, Fisicoquímica de Superficies.

References

Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120 (24), 6024–6036. DOI: https://doi.org/10.1021/ja974025i

Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D.; Barbara, S. Chem. Mater 2000, 12, 275–279. DOI: https://doi.org/10.1021/cm9911363

Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279 (5350), 548–552. DOI: https://doi.org/10.1126/science.279.5350.548

Liu, Y.; Lee, J. Y.; Hong, L. Journal of Power Sources 2002, 109, 507–514. DOI: https://doi.org/10.1016/S0378-7753(02)00167-2

Wang, X. L.; Mei, A.; Li, M.; Lin, Y.; Nan, C. W. Solid State Ionics 2006, 177 (15–16), 1287–1291. DOI: https://doi.org/10.1016/j.ssi.2006.06.016

Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Perez, E. S. J. Mater. Chem. A 2013, 1 (6), 1956–1962. DOI: https://doi.org/10.1039/c2ta01343f

Calleja, G.; Sanz, R.; Arencibia, A.; Sanz-Pérez, E. S. Top. Catal. 2011, 54, 135–145. DOI: https://doi.org/10.1007/s11244-011-9652-7

Wei, Y.; Li, X.; Zhang, R.; Liu, Y.; Wang, W.; Ling, Y.; Mohamed, A.; Zhao, D. Nat. Publ. Gr. 2016, No. January, 1–11.

Wang, L.; Ma, L.; Wang, A.; Liu, Q.; Zhang, T. Chinese J. Catal. 2007, 28 (9), 805–810. DOI: https://doi.org/10.1016/S1872-2067(07)60066-7

Liu, X.; Zhou, L.; Fu, X.; Sun, Y.; Su, W.; Zhou, Y. Chemical Engineering Science 2007, 62, 1101–1110. DOI: https://doi.org/10.1016/j.ces.2006.11.005

Kim, S. N.; Son, W. J.; Choi, J. S.; Ahn, W. S. Microporous Mesoporous Mater 2008, 115 (3), 497–503. DOI: https://doi.org/10.1016/j.micromeso.2008.02.025

Hiyoshi, N.; Yogo, K.; Yashima, T. Microporous Mesoporous Mater 2005, 84 (1–3), 357–365. DOI: https://doi.org/10.1016/j.micromeso.2005.06.010

Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B 2000, 104 (48), 11465–11471. DOI: https://doi.org/10.1021/jp002597a

Thielemann, J.; Girgsdies, F.; Schlögl, R.; Hess, C. Beilstein J. Nanotechnol. 2011, 2 (1), 110–118. DOI: https://doi.org/10.3762/bjnano.2.13

Ojeda-López, R.; Pérez-Hermosillo, I. J.; Esparza-Schulz, J. M.; Cervantes-Uribe, A.; Domínguez-Ortiz, A. Adsorption 2015, 21 (8), 659–669. DOI: https://doi.org/10.1007/s10450-015-9716-2

Ojeda-López, R.; Pérez-Hermosillo, I. J.; Esparza-Schulz, J. M.; Domínguez-Ortiz, A. Av. en Química 2014, 9 (1), 21–28. 17. Soler-Illia, G. J. a a; Azzaroni, O. Chem. Soc. Rev. 2011, 40 (2), 1107–1150.

Melero, J. a.; Stucky, G. D.; van Grieken, R.; Morales, G. Journal of Materials Chemistry 2002, pp 1664–1670. DOI: https://doi.org/10.1039/b110598c

Chong, A. S. M.; Zhao, X. S. J. Phys. Chem. B 2003, 107 (46), 12650–12657. DOI: https://doi.org/10.1021/jp035877+

Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pérez, E. S. Microporous Mesoporous Mater 2012, 158, 309–317. DOI: https://doi.org/10.1016/j.micromeso.2012.03.053

Lombardo, M. V; Videla, M.; Calvo, A.; Requejo, F. G.; Soler-illia, G. J. A. A. J. Hazard. Mater. 2012, 223–224, 53–62. DOI: https://doi.org/10.1016/j.jhazmat.2012.04.049

Szegedi, A.; Popova, M.; Goshev, I.; Mihály, J. J. Solid State Chem. 2011, 184 (5), 1201–1207. DOI: https://doi.org/10.1016/j.jssc.2011.03.005

Moritz, M.; ?aniecki, M. Appl. Surf. Sci. 2012, 258 (19), 7523–7529. DOI: https://doi.org/10.1016/j.apsusc.2012.04.076

Lombardo, M. V. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. España. 2013.

Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60 (1), 309–319. DOI: https://doi.org/10.1021/ja01269a023

Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B 2001, 105 (29), 6817–6823. DOI: https://doi.org/10.1021/jp010621u

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87 (9–10), 1051–1069. DOI: https://doi.org/10.1515/pac-2014-1117

Pollock, R. A.; Walsh, B. R.; Fry, J.; Ghampson, I. T.; Melnichenko, Y. B.; Kaiser, H.; Pynn, R.; Desisto, W. J.; Wheeler, M. C.; Frederick, B. G. Chem. Mater 2011, 23 (17), 3828–3840. DOI: https://doi.org/10.1021/cm200707y

Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122 (48), 11925–11933. DOI: https://doi.org/10.1021/ja002245h

Galarneau, A.; Cambon, H.; Di Renzo, F.; Fajula, F. Langmuir 2001, 17 (26), 8328–8335. DOI: https://doi.org/10.1021/la0105477

Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. New J. Chem. 2002, 27 (1), 73–79. DOI: https://doi.org/10.1039/b207378c

Savino, R.; Casadonte, F.; Terracciano, R. Molecules 2011, 16 (7), 5938–5962. DOI: https://doi.org/10.3390/molecules16075938

Ide, M.; El-Roz, M.; Canck, E. De; Vicente, A.; Planckaert, T.; Bogaerts, T.; Driessche, I. Van; Lynen, F.; Speybroeck, V. Van; Thybault-Starzyk, F.; Voort, P. Van Der. Phys. Chem. Chem. Phys. 2012, 15 (2), 642–650. DOI: https://doi.org/10.1039/C2CP42811C

Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109 (5), 1763–1769.

Rahman, I. A.; Jafarzadeh, M.; Sipaut, C. S. Ceram. Int. 2009, 35 (5), 1883–1888. DOI: https://doi.org/10.1016/j.ceramint.2008.10.028

Colilla, M.; Izquierdo-Barba, I.; Sánchez-Salcedo, S.; Fierro, J. L. G.; Hueso, J. L.; Vallet-Regí, M. Chem. Mater 2010, 22 (23), 6459–6466. DOI: https://doi.org/10.1021/cm102827y

Wang, X.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. J. Phys. Chem. B 2005, 109 (5), 1763–1769. DOI: https://doi.org/10.1021/jp045798d

Sanz-Pérez, E. S.; Olivares-Marín, M.; Arencibia, A.; Sanz, R.; Calleja, G.; Maroto-Valer, M. M. Int. J. Greenh. Gas Control 2013, 17, 366–375. DOI: https://doi.org/10.1016/j.ijggc.2013.05.011

Knowles, G. P.; Graham, J. V; Delaney, S. W.; Chaffee, A. L. Fuel Processing Technology 2005, 86, 1435–1448. DOI: https://doi.org/10.1016/j.fuproc.2005.01.014

Ünveren, E. E.; Monkul, B. Ö.; Sar?o?lan, ?.; Karademir, N.; Alper, E. Petroleum 2016, 1-14.

Vilarrasa-García, E.; Cecilia, J. A.; Santos, S. M. L.; Cavalcante, C. L.; Jiménez-Jiménez, J.; Azevedo, D. C. S.; Rodríguez-Castellón, E. Microporous Mesoporous Mater 2014, 187, 125–134. DOI: https://doi.org/10.1016/j.micromeso.2013.12.023

Danon, A.; Stair, P. C.; Weitz, E. J. Phys. Chem. C 2011, 115 (23), 11540–11549. DOI: https://doi.org/10.1021/jp200914v

Chang, A. C. C.; Chuang, S. S. C.; Gray, M.; Soong, Y. Energy & Fuels 2003, 17, 468–473. DOI: https://doi.org/10.1021/ef020176h

Yuan, M. H.; Wang, L.; Yang, R. T. Langmuir 2014, 30 (27), 8124–8130. DOI: https://doi.org/10.1021/la501794z

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...