Use in vitro of Gold Nanoparticles Functionalized with Folic Acid as a Photothermal Agent on Treatment of HeLa Cells

Authors

  • Linda Bertel Garay Universidad Industrial de Santander
  • Fernando Martínez Ortega Universidad Industrial de Santander
  • Stelia Carolina Méndez-Sanchez Universidad Industrial de Santander

DOI:

https://doi.org/10.29356/jmcs.v62i1.385

Keywords:

Folic acid, gold nanoparticles, near infrared, photothermal effect, cancer cells, plasmonic photothermal therapy.

Abstract

Folic acid (FA) is used as a recognition molecule to achieve selective internalization in cancer cells. Here functionalized gold nanoparticles with folic acid (AuNP-FA) are proposed as suitable therapeutic agents for cervix cancer cells by photothermal damage. The functionalized gold nanoparticles with folic acid were synthesized by mixing hydrogen tetrachloroaurate with folic acid in a molar ratio of 0.56/1 under radiation of mercury lamp (λmax=254 nm). HeLa cells were incubated with AuNP-FA during 48 h, then were irradiated and the cytotoxicity was analyzed 12 h after irradiation. The AuNP-FA were dose-dependent cytotoxic under irradiation and not cytotoxic in the absence of radiation. The viability of cancer cells treated with functionalized and non-functionalized gold nanoparticles (AuNPs), with and without near infrared light at 808 nm, was measured by MTT assays. This work provides useful guidance toward the synthesis of biocompatible nanomaterials for biological applications.

Downloads

Download data is not yet available.

References

Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 28, 2115–2120. DOI: https://doi.org/10.1021/ja057254a

Huang, X.; Qian, W.; El-Sayed, I. H.; El-Sayed, M. A. Lasers Surg. Med. 2007, 39, 747–753. DOI: https://doi.org/10.1002/lsm.20577

Abdulla-Al-Mamun, M.; Kusumoto, Y.; Mihata, A.; Islam, M. S.; Ahmmad, B. Photochem. Photobiol. Sci. 2009, 8, 1125–1129. DOI: https://doi.org/10.1039/b907524k

Li, G.; Li, D.; Zhang, L.; Zhai, J.; Wang, E. Chem. Eur. J. 2009, 15, 9868–9873. DOI: https://doi.org/10.1002/chem.200900914

Zhang, Z.; Jia, J.; Lai, Y.; Ma, Y.; Weng, J.; Sun, L. Bioorg. Med. Chem. 2010, 18, 5528–5534.

Tsai, S.-W.; Liaw, J.-W.; Hsu, F.-Y.; Chen, Y.-Y.; Lyu, M.-J.; Yeh, M.-H. Sensors. 2008, 8, 6660–6673. DOI: https://doi.org/10.3390/s8106660

Devendiran, R. M.; Chinnaiyan, S.K.; Yadavb, N.K.; Moorthy, G.K.; Ramanathan, G.; Singaravelu, S.; Sivagnanam, U.T.; Perumal, P.T. RSC Adv. 2016, 6, 29757-29768. DOI: https://doi.org/10.1039/C6RA01698G

Rogert, E.; Kalscheuer, S.; Kirtane, A.; Raja, B.; Grill, A. E.; Whittum-Hudson, J.; Panyam, J. Mol. Pharmaceutics. 2012, 9, 2103–2110. DOI: https://doi.org/10.1021/mp2005388

He, Y. Q.; Liu, S. P.; Kong, L.; Liu, Z. F. Spectrochimica Acta Part A. 2005, 61, 2861–2866. DOI: https://doi.org/10.1016/j.saa.2004.10.035

Nikoobakht, B.; El-sayed, M. A. Chem. Mater. 2003, 15, 1957–1962. DOI: https://doi.org/10.1021/cm020732l

Jana, N. R.: Gearheart, L.; Murphy, C. J. J. Phys. Chem. B. 2001, 105, 4065–4067. DOI: https://doi.org/10.1021/jp0107964

Huang, W.-C.; Chen, Y.-C. J. Nanoparticle Res. 2008, 10, 697–702. DOI: https://doi.org/10.1007/s11051-007-9293-8

Eustis, S.; Hsu, H.; El-sayed, M. A. J. Phys. Chem. B. 2005, 109, 4811–4815. DOI: https://doi.org/10.1021/jp0441588

Jhaveri, M. S.; Wagner, C.; Trepel, J. B. Mol. Pharmacol. 2001, 60, 1288–1295. DOI: https://doi.org/10.1124/mol.60.6.1288

Sega, E. I.; Low, P. S. Cancer Metastasis Rev. 2008, 27, 655–664. DOI: https://doi.org/10.1007/s10555-008-9155-6

Zhang, Z.; Jia, J.; Lai, Y.; Ma, Y.; Weng, J.; Sun, L. Bioorg. Med. Chem. 2010, 18, 5528–5534. DOI: https://doi.org/10.1016/j.bmc.2010.06.045

Tong, L.; Zhao, Y.; Huff, T. B; Hansen, M. N; Wei, A.; Cheng, J.-X. Adv. Mater. 2007, 19, 3136–3141. DOI: https://doi.org/10.1002/adma.200701974

Volsi, A. L.; Scialabba, C.; Vetri, V.; Cavallaro, G.; Licciardi, M.; Giammona, G. ACS Appl. Mater. Interfaces. 2017, 9, 14453–14469. DOI: https://doi.org/10.1021/acsami.7b03711

Mansoori, G. A.; Brandenburg, K. S.; Shakeri-Zadeh, A. Cancers. 2010, 2, 1911-1928. DOI: https://doi.org/10.3390/cancers2041911

Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E. M.; Frieder, J, Wu, J.; Farokhzad, O. C. Angew. Chem. 2012, 124, 12023-12027. DOI: https://doi.org/10.1002/ange.201204018

Castillo, J.; Bertel, L.; Páez-Mozo, E.; Martínez, F. Nanomater. nanotechnol. 2013, 3, 1–6. DOI: https://doi.org/10.5772/57144

Mosmann, T. J. Immunol. Methods. 1983, 65, 55–63. DOI: https://doi.org/10.1016/0022-1759(83)90303-4

Sapsford, K. E.; Algar, W. R.; Berti, L.; Gemmill, K. B.; Casey, B. J.; Oh, E.; Stewart, M. H.; Medintz, I. L. Chem. Rev. 2013, 113, 1904–2074. DOI: https://doi.org/10.1021/cr300143v

Hu, J.; Wang, Z.; Li, J. Sensors. 2007, 7, 3299–3311. DOI: https://doi.org/10.3390/s7123299

Castillo, J. J.; Rindzevicius, T.; Rozo, C. E.; Boisen, A. Nanomater. Nanotechnol. 2015, 5, 1-7. DOI: https://doi.org/10.5772/61606

Chen, C.; Ke, J.; Zhou, X. E.; Yi, W.; Brunzelle, J. S.; Li, J.; Yong, E.-L.; Xu, H. E.; Melcher, K. Nature. 2013, 500, 486–489. DOI: https://doi.org/10.1038/nature12327

Horimoto, N. N.; Imura, K.; Okamoto, H. Chem. Phys. Lett. 2008, 467, 105–109. DOI: https://doi.org/10.1016/j.cplett.2008.10.067

Chhabra, R.; Sharma, J.; Wang, H.; Zou, S.; Lin, S.; Yan, H.; Lindsay, S.; Liu, Y. Nanotechnology. 2009, 20, 1-10. DOI: https://doi.org/10.1088/0957-4484/20/48/485201

Chithrani, B. D.; Chan, W. C. W. Nano Lett. 2007, 7, 1542–1550. DOI: https://doi.org/10.1021/nl070363y

×

Downloads

Additional Files

Published

2018-05-25

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...