An Efficient and Stable Electrochemical Sensor Based on PtPd/CZO (CuO-doped ZnO) Synergistically Modified Electrode for ppb-level Formaldehyde Detection

Authors

  • Siyu Chen China Jiliang University
  • Li Jiang China Jiliang University
  • Yahong Luo Henan Normal University
  • Xiaowei Huang China Jiliang University
  • Fan Zhang China Jiliang University
  • Zhu Tao
  • Yanxia Liang China Jiliang University
  • Jiao Liu China Jiliang University

DOI:

https://doi.org/10.29356/jmcs.v70i1.2490

Keywords:

Alloy, Pd, hydrogenation

Abstract

Abstract. An efficient formaldehyde (FA) detection system was developed through the functionalization of a glassy carbon electrode (GCE) with PtPd nanoparticles and CuO-doped ZnO (CZO) composite. A comprehensive suite of analytical techniques was employed to investigate the composite materials' morphology and electrocatalytic performance. The findings indicated that the bandgap energy and resistance value (Rct + Rp) of PtPd/CZO nanoparticles (NPs) were 1.95 eV and 912.61 Ω, respectively, which are lower than those of CZO NPs. This indicates a higher surface electron transfer rate and enhanced catalytic properties for PtPd/CZO NPs. The electrocatalytic oxidation performance of the PtPd/CZO/GCE were thoroughly evaluated. The PtPd/Nafion/GCE sensor exhibited remarkable electrocatalytic performance toward formaldehyde electro-oxidation within a 0.1 M sulfuric acid medium, showing a linear response between 50.0 and 7000.0 µM along with a detection threshold of 5.8 µM. This sensor offers exceptional stability and reliability, with its practical application value proven through experiences.

 

Resumen. Se desarrolló un sistema eficiente de detección de formaldehído (FA) mediante la funcionalización de un electrodo de carbono vítreo (ECV) con nanopartículas de PtPd y con un compuesto de ZnO (CZO) dopado con CuO. Se empleó un conjunto completo de técnicas analíticas para investigar la morfología y el rendimiento electrocatalítico de los materiales compuestos. Los resultados indicaron que la energía de banda prohibida y el valor de resistencia (Rct + Rp) de las nanopartículas (NP) de PtPd/CZO fueron de 1,95 eV y 912,61 Ω, respectivamente, inferiores a los de las NP de CZO. Esto indica una mayor tasa de transferencia de electrones en la superficie y mejores propiedades catalíticas para las NP de PtPd/CZO. Se evaluó exhaustivamente el rendimiento de la oxidación electrocatalítica en PtPd/CZO/ECV. El sensor PtPd/Nafion/GCE mostró un rendimiento electrocatalítico excepcional en la electrooxidación de formaldehído en un medio de ácido sulfúrico 0,1 M, con una respuesta lineal entre 50,0 y 7000,0 µM, y un umbral de detección de 5,8 µM. Este sensor ofrece una estabilidad y fiabilidad excepcionales, con un valor práctico comprobado por la experiencia.

 

Downloads

Download data is not yet available.

Author Biographies

Siyu Chen, China Jiliang University

College of Materials and Chemistry

Li Jiang, China Jiliang University

College of Materials and Chemistry

Yahong Luo, Henan Normal University

School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education

Xiaowei Huang, China Jiliang University

College of Materials and Chemistry

Fan Zhang, China Jiliang University

College of Materials and Chemistry,

Zhu Tao

China Jiliang University - Xiasha Higher Education Campus: China Jiliang University

Yanxia Liang, China Jiliang University

College of Materials and Chemistry

Jiao Liu, China Jiliang University

College of Materials and Chemistry

References

1. Silva, A. M.; Castelo-Branco, I. M.; Quinta-Ferreira, R. M.; Levec, J. Chem.Eng. Sci. 2003, 58, 963-970. DOI: https://doi.org/10.1016/S0009-2509(02)00636-X

2. Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Toxicol.Pathol. 2013, 41, 181-189.

3. Malakhova, N.; Mozharovskaia, P.; Kifle, A. B.; Kozitsina, A. Anal. Methods. 2022, 14, 3423-3433.

4. Kurth, T.; Holtmann, G.; Neufang-Hüber, J.; Gerken, G.; Diener, H. J. Cephalalgia. 2006, 26, 506-510. DOI: https://doi.org/10.1111/j.1468-2982.2005.01076.x

5. Mavromichalis, I. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 365,366. DOI: https://doi.org/10.1097/00005176-199703000-00026

6. Hwang, H.-S.; Choi, H.-S.; Bin, J.-H.; Kim, Y.-H.; Lee, I.-G.; Chung, S.-Y. Journal of the Korean Child Neurology Society. 2008, 169-174.

7. Liu, Q.; Yang, L.; Gong, C.; Tao, G.; Huang, H.; Liu, J.; Zhang, H.; Wu, D.; Xia, B.; Hu, G. Toxicol. Lett 2011, 205, 235-240. DOI: https://doi.org/10.1016/j.toxlet.2011.05.1039

8. Vellingiri, K.; Deep, A.; Kim, K.-H.; Boukhvalov, D. W.; Kumar, P.; Yao, Q. J. S. Sensors Actuators B: Chem. 2017, 241, 938-948. DOI: https://doi.org/10.1016/j.snb.2016.11.017

9. E. F. S. A. J. E. EFSA J. 2011, 9, 2097. DOI: https://doi.org/10.2903/j.efsa.2011.2097

10. Chu, Z.-X.; Song, Q.; Zhang, Y.-Q.; Jiang, J. Coord. Chem. Rev. 2023, 495, 215338. DOI: https://doi.org/10.1016/j.ccr.2023.215338

11. Ai, J.; Cui, Y.; Ren, M.; Liu, K.; Wang, S.; Wu, Q.; Wang, X.; Kong, F. J. Microchem. J. 2024, 110902. DOI: https://doi.org/10.1016/j.microc.2024.110902

12. Wang, Z.; Li, M.; Xu, S.; Sun, L.; Li, L. J. Anal. Chim. Acta. 2024, 1318, 342905.

13. Roy, S.; Pan, S.; Choudhury, N.; Sivaram, S.; De, P. Eur. Polym. J. 2024, 113241. DOI: https://doi.org/10.1016/j.eurpolymj.2024.113241

14. Gibson, L.; Kerr, W.; Nordon, A.; Reglinski, J.; Robertson, C.; Turnbull, L.; Watt, C.; Cheung, A.; Johnstone, W. Anal. Chim. Acta. 2008, 623, 109-116. DOI: https://doi.org/10.1016/j.aca.2008.06.002

15. Azizi, S. N.; Ghasemi, S.; Amiripour, F. J. S. Sensors Actuators B: Chem. 2016, 227, 1-10. DOI: https://doi.org/10.1016/j.snb.2015.11.142

16. Ganesh, V. J. Opt. Mater. 2022, 132, 112834. DOI: http://dx.doi.org/10.1016/j.optmat.2022.112834

17. Vinosha, P. A.; Mely, L. A.; Jeronsia, J. E.; Krishnan, S.; Das, S. J. Optik. 2017, 134, 99-108. DOI: https://doi.org/10.1016/j.ijleo.2017.01.018

18. Liu, J.; Chen, Y.; Zhang, H. Sensors Actuators B: Chem. 2021, 21, 4685. DOI: https://doi.org/10.3390/s21144685

19. Li, S.; Yu, L.; Zhang, C.; Li, X.; Cao, L.; Du, H.; Fan, X. Sensors Actuators B: Chem. 2024, 136179. DOI: https://doi.org/10.1016/j.snb.2024.136179

20. Yang, Y.; Kim, S.; Kim, K.; Jung, D. G.; Jung, D. Surf. Interfaces. 2024, 46, 104131. DOI: https://doi.org/10.1016/j.surfin.2024.104131

21. Mariammal, R.; Ramachandran, K. J. Mater. Res. Bull. 2018, 100, 420-428.DOI: https://doi.org/10.1016/j.materresbull.2017.12.046

22. Di̇ltemi̇z, S. E. r.; Ecevi̇t, K. J. Alloys Compd. 2019, 783, 608-616. DOI: https://doi.org/10.1016/j.jallcom.2018.12.237

23. Li, G.; Zhang, W.; Luo, N.; Xue, Z.; Hu, Q.; Zeng, W.; Xu, J. Nanomaterials. 2021, 11, 1926. DOI: https://doi.org/10.3390/nano11081926

24. Liu, X.; Wang, D.; Li, Y. Nano Today. 2012, 7, 448-466. DOI: https://doi.org/10.1016/j.nantod.2012.08.003

25. Nguyen, T. T.; Van Dao, D.; Ha, N. T. T.; Van Tran, T.; Kim, D.-S.; Yoon, J.-W.; Ha, N. N.; Lee, I.-H.; Yu, Y.-T. J. S. Sensors Actuators B: Chem. 2022, 354, 131083.

26. Cai, T.; Zhang, H.; Xing, H.; Xia, X.; Zhang, Z.; Zhang, K.; Chen, H.; Ye, Y.; Guo, W.; Huang, H. J. J. Electron. Mater. 2023, 52, 4959-4970. DOI: https://doi.org/10.1007/s11664-023-10418-6

27. Zhao, X.; Liu, Y.; Deng, J.; Xu, P.; Yang, J.; Zhang, K.; Han, Z.; Dai, H. Mol. Catal. 2017, 442, 191-201. DOI: https://doi.org/10.1016/j.mcat.2017.09.002

28. Wu, C. H.; Liu, C.; Su, D.; Xin, H. L.; Fang, H.-T.; Eren, B.; Zhang, S.; Murray, C. B.; Salmeron, M. B. Nat. Catal. 2019, 2, 78-85. DOI: https://doi.org/10.1038/s41929-018-0190-6

29. Luo, M.; Wang, F.; Liu, Q.; Li, W.; Shao, C.; Liu, X.; Ai, B. React. Kinet. Mech. 2023, 136, 2039-2051. DOI: https://doi.org/10.1007/s11144-023-02437-5

30. Raveendran, A.; Chandran, M.; Dhanusuraman, R. RSC Adv. 2023, 13, 3843-3876. DOI: https://doi.org/10.1039/D2RA07642J

31. Ali, S. M. Sci. Rep. 2025, 15. DOI: https://doi.org/10.1038/s41598-024-84727-z

32. Jin, X.; Zhao, X.; Huang, K. J. Power Sources. 2015, 280, 195-204. DOI: https://doi.org/10.1016/j.jpowsour.2015.01.080

33. Liu, Y.; Zhang, H.; Ju, A.; Li, P.; Qu, X.J. J. Energy Storage. 2024, 104, 114731. DOI: https://doi.org/10.1016/j.est.2024.114731

34. Thanh, T. S.; Tu, N. T. T.; Quy, P. T.; Toan, T. T. T.; Thanh, N. M.; Nguyen, V. T.; Tuan, N. H.; Nhiem, D. N.; Lieu, P. K.; Khieu, D. Q. ECS J. Solid State Sci. Technol. 2021, 10, 117001. DOI: http://dx.doi.org/10.1149/2162-8777/ac372c

35. Eixenberger, J. E.; Anders, C. B.; Hermann, R. J.; Brown, R. J.; Reddy, K. M.; Punnoose, A.; Wingett, D. G. Chem. Res. Toxicol. 2017, 30, 1641-1651. DOI: https://doi.org/10.1021/acs.chemrestox.7b00136

36. Shubha, J.; Roopashree, B.; Patil, R.; Khan, M.; Shaik, M. R.; Alaqarbeh, M.; Alwarthan, A.; Karami, A. M.; Adil, S. F. Arab. J. Chem. 2023, 16, 104547-104554. DOI: http://dx.doi.org/10.1016/j.arabjc.2023.104547

37. Al-Rasheidi, M.; Khan, F.; Al-Ahmed, A.; Rehman, S.; Al-Sulaiman, F. Opt. Mater. 2022, 126, 112144. DOI: https://doi.org/10.1016/j.optmat.2022.112144

38. Chen, Z.; Jaramillo, T. F. J. D. o. C. E. Chem. Eng. J. 2017, 9, 19.

39. Jubu, P.; Yam, F.; Igba, V.; Beh, K. J. J. Solid State Chem. 2020, 290, 121576. DOI: https://doi.org/10.1016/j.jssc.2020.121576

40. Li, J.; Yuan, Z.; Mu, Z.; Yang, Z.; Meng, F. J. S. Sensors Actuators B: Chem. 2024, 405, 135404. DOI: https://doi.org/10.1016/j.snb.2024.135404

41. Ye, L.; Liang, Y. Physica B. 2024, 674, 415579. DOI: https://doi.org/10.1016/j.physb.2023.415579

42. Hu, Y.; Anandkumar, M.; Joardar, J.; Wang, X.; Deshpande, A. S.; Reddy, K. M. Sci. Rep. 2023, 13, 2362. DOI: https://doi.org/10.1038/s41598-023-29477-0

43. Ivanova, T.; Maslakov, K.; Sidorov, A.; Kiskin, M.; Linko, R.; Savilov, S.; Lunin, V.; Eremenko, I. J. Electron. Spectrosc. Relat. Phenom. 2020, 238, 146878. DOI: https://doi.org/10.1016/j.elspec.2019.06.010

44. González-Meza, O.; Larios-Durán, E.; Gutiérrez-Becerra, A.; Casillas, N.; Escalante, J.; Bárcena-Soto, M. J. ECS Solid State Electrochem. 2019, 23, 3123-3133. DOI: https://doi.org/10.1007/s10008-019-04410-6

45. Lv, J.-J.; Wisitruangsakul, N.; Feng, J.-J.; Luo, J.; Fang, K.-M.; Wang, A.-J. Electrochim. Acta. 2015, 160, 100-107. V. DOI: https://doi.org/10.1016/j.electacta.2015.02.052

46. Rahman, M. M. Sensors Actuators B: Chem. 2020, 305, 127541. DOI: https://doi.org/10.1016/j.snb.2019.127541

47. Xu, S.; Jiang, L.; Huang, X.; Ju, W.; Liang, Y.; Tao, Z.; Yang, Y.; Zhu, B.; Wei, G. Nanotechnology. 2023, 35, 025704. DOI: http://dx.doi.org/10.1088/1361-6528/ad0124

48. Ma, R.; Wu, F.; Yue, J.; Zhao, W.; Yan, J.; Cui, H.; Feng, P.; Peng, X. Microchem. J. 2024, 205.DOI: https://doi.org/10.1016/j.microc.2024.111234

49. Becker, A.; Andrikopoulou, C.; Bernhardt, P.; Trocquet, C.; Le Calvé, S., Chemosensors. 2020, 8. DOI: https://doi.org/10.3390/chemosensors8030057

50. Hornshøj, B. H.; Kobbelgaard, S.; Blakemore, W. R.; Stapelfeldt, H.; Bixler, H. J.; Klinger, M. Food Addit. Contam. A. 2015, 32, 152-160. DOI: https://doi.org/10.1080/19440049.2014.992049

51. de Freitas Rezende, F. B.; Cheibub, A. M. d. S. S.; Netto, A. D. P.; de Carvalho Marques, F. Microchem. J. 2017, 134, 383-389.

52. Shin, J.; Jeong, B.; Chinannai, M. F.; Ju, H. Electrochim. Acta. 2021, 390, 138858. DOI: https://doi.org/10.1016/j.electacta.2021.138858

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.

Loading...