Contributions from UAM-Iztapalapa to the Study of Confined Atoms and Molecules

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i4.2266

Keywords:

Confined systems, systems under high pressure, electronic structure under extreme conditions

Abstract

The study of confined quantum systems has been a subject of fundamental interest of research at the Universidad Autónoma Metropolitana (UAM) for over 30 years. This summary highlights the contributions of the present authors from UAM in this field considering various quantum systems under different confinement conditions. The paper is divided into two sections: one focusing on atoms and molecules confined by closed and open hard walls, and the other on systems confined by closed and open soft walls. As UAM celebrates its 50th anniversary, it is a timely moment to reflect on the development of collective efforts of the Chemistry and Physics departments in contributing to knowledge in this intriguing and interesting field.

 

Resumen. El estudio de sistemas cuánticos confinados ha sido objeto de fundamental interés en la Universidad Autónoma Metropolitana (UAM) sobre 30 años. Este resumen resalta las contribuciones de la autora y autores de la UAM en este campo considerando varios sistemas cuánticos bajo diferentes condiciones de confinamiento. El artículo está dividido en dos secciones: una enfocándose en átomos y moléculas confinadas por paredes duras cerradas y abiertas, y la otra en sistemas confinados por paredes suaves cerradas y abiertas. Como la UAM celebra su 50 aniversario, es un buen momento para mostrar el desarrollo de esfuerzos colectivos de los departamentos de química y física en la contribución del conocimiento en este interesante e intrigante campo.

Downloads

Download data is not yet available.

Author Biographies

Norberto Aquino, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Física, División de Ciencias Básicas e Ingeniería

Salvador Cruz, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Física, División de Ciencias Básicas e Ingeniería

Jorge Garza, Universidad Autonoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

Rubicelia Vargas, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

References

Wigner, E.; Seitz, F. Constitution of metallic sodium. Phys. Rev. 1933, 43, 804–810. DOI: https://doi.org/10.1103/PhysRev.43.804. DOI: https://doi.org/10.1103/PhysRev.43.804

Wigner, E.; Seitz, F. Constitution of metallic sodium II. Phys. Rev. 1934, 46, 509–534. DOI: https://doi.org/10.1103/PhysRev.46.509. DOI: https://doi.org/10.1103/PhysRev.46.509

Michels, A.; De Boer, J.; Bijl, A. Physica 1937, 4, 981. DOI: https://doi.org/10.1103/PhysRev.46.509. DOI: https://doi.org/10.1016/S0031-8914(37)80196-2

Sommerfeld, A.; Welker, H. Ann. Phys. 1938, 32, 56–65. DOI: https://doi.org/10.1002/andp.19384240109. DOI: https://doi.org/10.1002/andp.19384240109

Bates, D. R.; Bederson, B. Adv. At. Mol. Opt. Phys. 1978, 13, 1-55. DOI: https://doi.org/10.1016/S0065-2199(08)60054-8. DOI: https://doi.org/10.1016/S0065-2199(08)60054-8

Jaskólski, W. Confined many-electron systems. Phys. Rep. 1996, 271, 1–66. DOI: https://doi.org/10.1016/0370-1573(95)00070-4. DOI: https://doi.org/10.1016/0370-1573(95)00070-4

Sabin, J. R.; E. Brändas, E.; Cruz, S. A. Adv. Quantum Chem. Vols. 57 and 58; Academic Press: Amsterdam, 2009.

Sen, K. D. Electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014. DOI: https://doi.org/10.1007/978-3-319-09982-8

Ley-Koo, E. Rev. Mex. Fis. 2018, 64, 326–363. DOI: https://doi.org/10.31349/RevMexFis.64.326. DOI: https://doi.org/10.31349/RevMexFis.64.326

Ley-Koo, E.; Rubinstein, S. J. Chem. Phys. 1979, 71, 351–357. DOI: https://doi.org/10.1063/1.438077. DOI: https://doi.org/10.1063/1.438077

Marin, J. L.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 1991, 24, 2899. DOI: https://doi.org/10.1088/0953-4075/24/13/006. DOI: https://doi.org/10.1088/0953-4075/24/13/006

Aquino, N. Int. J. Quantum Chem. 1995, 54, 107–115. DOI: https://doi.org/10.1002/qua.560540206. DOI: https://doi.org/10.1002/qua.560540206

Marin, J. L.; Cruz, S. A. Am. J. Phys. 1991, 59, 931–935. DOI: https://doi.org/10.1119/1.16674. DOI: https://doi.org/10.1119/1.16674

Aquino, N. Adv. Quantum Chem. 2009, 57, 123–171. DOI: https://doi.org/10.1016/S0065-3276(09)00608-X. DOI: https://doi.org/10.1016/S0065-3276(09)00608-X

Aquino, N.; Campoy, G.; Montgomery, H. E., Jr. Int. J. Quantum Chem. 2007, 107, 1548–1558. DOI: https://doi.org/10.1002/qua.21313. DOI: https://doi.org/10.1002/qua.21313

Garza, J.; Vargas, R.; Sen, K. D., in Chemical Reactivity Theory: A Density Functional View ; CRC Press, 2009; pp 521–537. DOI: https://doi.org/10.1201/9781420065442. DOI: https://doi.org/10.1201/9781420065442

Rojas, R. A.; Aquino, N. Rev. Mex. Fis. 2019, 65, 116–123. DOI: https://doi.org/10.31349/revmexfis.65.116. DOI: https://doi.org/10.31349/RevMexFis.65.116

Rojas, R. A.; Aquino, N.; Flores-Riveros, A. Int. J. Quantum Chem. 2018, 118, e25612. DOI: https://doi.org/10.1002/qua.25584. DOI: https://doi.org/10.1002/qua.25584

Aquino, N.; Flores-Riveros, A., in electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014; Chapter 3, pp 59–89. DOI: https://doi.org/10.1007/978-3-319-09982-8_3. DOI: https://doi.org/10.1007/978-3-319-09982-8_3

Solorzano, A.; Aquino, N.; Flores-Riveros, A. Can. J. Phys. 2016, 94, 894–901. DOI: https://doi.org/10.1139/cjp-2015-0434. DOI: https://doi.org/10.1139/cjp-2015-0434

Aquino, N.; Rojas, R. A. Eur. J. Phys. 2016, 37, 015401. DOI: https://doi.org/10.1088/0143-0807/37/1/015401. DOI: https://doi.org/10.1088/0143-0807/37/1/015401

Sen, K.; Mayer, B.; Schmidt, P.; Garza, J.; Vargas, R.; Vela, A. Int. J. Quantum Chem. 2002, 90, 491–496. DOI: https://doi.org/10.1002/qua.946. DOI: https://doi.org/10.1002/qua.946

Cabrera-Trujillo, R.; Cruz, S. A. Phys. Rev. A 2013, 87, 012502. DOI: https://doi.org/10.1103/PhysRevA.87.012502. DOI: https://doi.org/10.1103/PhysRevA.87.012502

Ley-Koo, E.; Cruz, S. A. J. Chem. Phys. 1981, 74, 4603–4610. DOI: https://doi.org/10.1063/1.441649. DOI: https://doi.org/10.1063/1.441649

Cruz, S.; Ley-Koo, E.; Marín, J.; Taylor-Armitage, A. Int. J. Quantum Chem. 1995, 54, 3–11. DOI: https://doi.org/10.1002/qua.560540103. DOI: https://doi.org/10.1002/qua.560540103

Cruz, S. A.; Colin-Rodriguez, R. Int. J. Quantum Chem. 2009, 109, 3041–3054. DOI: https://doi.org/10.1002/qua.22257. DOI: https://doi.org/10.1002/qua.22257

Olivares-Pilón, H.; Cruz, S. A. Int. J. Quantum Chem. 2017, 117, e25399. DOI: https://doi.org/10.1002/qua.25399. DOI: https://doi.org/10.1002/qua.25399

Yanajara-Parra, H. H.; Corella, A.; Duarte-Alcaráz, F. A.; Vargas, R.; Garza, J. J. Phys. Commun. 2024, 8, 025004. DOI: https://doi.org/10.1088/2399-6528/ad246e. DOI: https://doi.org/10.1088/2399-6528/ad246e

Cruz, S. A.; Garrido-Aguirre, D. Radiat. Eff. Defects Solids 2020, 175, 202–217. DOI: https://doi.org/10.1080/10420150.2020.1718144. DOI: https://doi.org/10.1080/10420150.2020.1718144

Fernandez, F. M.; Aquino, N.; Flores-Riveros, A. Int. J. Quantum Chem. 2012, 112, 823–828. DOI: https://doi.org/10.1002/qua.23066. DOI: https://doi.org/10.1002/qua.23066

Aquino, N.; Campoy, G.; Flores-Riveros, A. Int. J. Quantum Chem. 2005, 103, 267–277. DOI: https://doi.org/10.1002/qua.20508. DOI: https://doi.org/10.1002/qua.20508

Estanon, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2021, 121, e26424. DOI: https://doi.org/10.1002/qua.26424.

Estañón, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2020, 121, e26192. DOI: https://doi.org/10.1002/qua.26192. DOI: https://doi.org/10.1002/qua.26424

Sen, K.; Garza, J.; Vargas, R.; Aquino, N. Phys. Lett. A 2002, 295, 299–304. DOI: https://doi.org/10.1016/S0375-9601(02)00148-2. DOI: https://doi.org/10.1016/S0375-9601(02)00148-2

Banerjee, A.; Sen, K. D.; Garza, J.; Vargas, R. J. Chem. Phys. 2002, 116, 4054–4057. DOI: https://doi.org/10.1063/1.1449460. DOI: https://doi.org/10.1063/1.1449460

Cabrera-Trujillo, R.; Méndez-Fragoso, R.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 2017, 50, 135002. DOI: https://doi.org/10.1088/1361-6455/aa73a1. DOI: https://doi.org/10.1088/1361-6455/aa73a1

Díaz-García, C.; Cruz, S. A. Phys. Lett. A. 2006, 353, 332–336. DOI: https://doi.org/10.1016/j.physleta.2005.12.091. DOI: https://doi.org/10.1016/j.physleta.2005.12.091

Aquino, N.; Garza, J.; Flores-Riveros, A.; Rivas-Silva, J.; Sen, K. J. Chem. Phys. 2006, 124, 054311. DOI: https://doi.org/10.1063/1.2148948. DOI: https://doi.org/10.1063/1.2148948

Montgomery, H. E., Jr.; Aquino, N.; Flores-Riyeros, A. Phys. Lett. A 2010, 374, 2044–2047. DOI: https://doi.org/10.1016/j.physleta.2010.02.074. DOI: https://doi.org/10.1016/j.physleta.2010.02.074

Carmona-Espíndola, J.; Alcalde-Segundo, I.; Vargas, R.; Garza, J., in COMPUTATIONAL AND EXPERIMENTAL CHEMISTRY: Developments and applications; CRC Press: New Jersey, 2013; Chapter 5, pp 111–125. DOI: https://doi.org/10.1201/b15459. DOI: https://doi.org/10.1201/b15459

Aquino, N. AIP Conf. Proc. 2014, 1579, 136–140. DOI: https://doi.org/10.1063/1.4862428. DOI: https://doi.org/10.1063/1.4862428

Flores-Riveros, A.; Aquino, N.; Montgomery, H. E., Jr. Physics. Lett. A 2010, 374, 1246-1252. DOI: https://doi.org/10.1016/j.physleta.2009.12.062. DOI: https://doi.org/10.1016/j.physleta.2009.12.062

Young, T. D.; Vargas, R.; Garza, J. Phys. Lett. A. 2016, 380, 712–717. DOI: https://doi.org/10.1016/j.physleta.2015.11.021. DOI: https://doi.org/10.1016/j.physleta.2015.11.021

Garza, J.; Vargas, R. Adv. Quantum Chem. 2009, 57, 241–254. DOI: https://doi.org/10.1016/S0065-3276(09)00611-X. DOI: https://doi.org/10.1016/S0065-3276(09)00611-X

Nasser, I.; Martínez-Flores, C.; Zeama, M.; Vargas, R.; Garza, J. Phys. Lett. A 2021, 392, 127136. DOI: https://doi.org/10.1016/j.physleta.2020.127136. DOI: https://doi.org/10.1016/j.physleta.2020.127136

Martínez-Flores, C.; Martínez-Sánchez, M. A.; Vargas, R.; Garza, J. Eur. Phys. J. D 2021, 75, 100. DOI: https://doi.org/10.1140/epjd/s10053-021-00110-x. DOI: https://doi.org/10.1140/epjd/s10053-021-00110-x

Cruz, S.; Díaz-García, C.; Covarrubias, G. Int. J. Quantum Chem. 2005, 102, 897–910. DOI: https://doi.org/10.1002/qua.20452. DOI: https://doi.org/10.1002/qua.20452

Cruz, S.; Díaz-García, C.; Pathak, A.; Soullard, J. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2005, 230, 46–52. DOI: https://doi.org/10.1016/j.nimb.2004.12.015. DOI: https://doi.org/10.1016/j.nimb.2004.12.015

Garza, J.; Vargas, R., in electronic structure of quantum confined atoms and molecules; Springer International Publishing, 2014; Chapter 8, pp 205–225. DOI: https://doi.org/10.1007/978-3-319-09982-8_8. DOI: https://doi.org/10.1007/978-3-319-09982-8_8

Cruz, S. A. Adv. Quantum Chem. 2009, 57, 255–283. DOI: https://doi.org/10.1016/S0065-3276(09)00612-1. DOI: https://doi.org/10.1016/S0065-3276(09)00612-1

Garza, J.; Vargas, R.; Vela, A. Phys. Rev. E 1998, 58, 3949–3954. DOI: https://doi.org/10.1103/PhysRevE.58.3949. DOI: https://doi.org/10.1103/PhysRevE.58.3949

García-Miranda, J.-J.; Vargas, R.; Garza, J. Phys. Rev. E 2023, 108, 035302. DOI: https://doi.org/10.1103/PhysRevE.108.035302. DOI: https://doi.org/10.1103/PhysRevE.108.035302

Garza, J.; Hernández-Pérez, J. M.; Ramírez, J.-Z.; Vargas, R. J. Phys. B: At. Mol. Opt. Phys. 2011, 45, 015002. DOI: https://doi.org/10.1088/0953-4075/45/1/015002. DOI: https://doi.org/10.1088/0953-4075/45/1/015002

García-Hernández, E.; Díaz-García, C.; Vargas, R.; Garza, J. J. Phys. B: At. Mol. Opt. Phys. 2014, 47, 185007. DOI: https://doi.org/10.1088/0953-4075/47/18/185007. DOI: https://doi.org/10.1088/0953-4075/47/18/185007

García-Hernández, E.; Díaz-García, C.; Vargas, R.; Garza, J. AIP Conf. Proc. 2013, 1558, 1528–1531. DOI: https://doi.org/10.1063/1.4825814. DOI: https://doi.org/10.1063/1.4825814

Sen, K.; Garza, J.; Vargas, R.; Vela, A. Chem. Phys. Lett. 2000, 325, 29–32. DOI: https://doi.org/10.1016/S0009-2614(00)00670-9. DOI: https://doi.org/10.1016/S0009-2614(00)00670-9

Garza, J.; Vargas, R.; Vela, A.; Sen, K. J. Mol. Struc. (THEOCHEM) 2000, 501-502, 183–188. DOI: https://doi.org/10.1016/S0166-1280(99)00428-5. DOI: https://doi.org/10.1016/S0166-1280(99)00428-5

Sen, K.; Garza, J.; Vargas, R.; Vela, A. Proc. Indian Natn. Sci. Acad. 2004, 70A, 675–681.

Guerra, D.; Vargas, R.; Fuentealba, P.; Garza, J. Adv. Quantum Chem. 2009, 58, 1–12. DOI: https://doi.org/10.1016/S0065-3276(09)00705-9. DOI: https://doi.org/10.1016/S0065-3276(09)00705-9

Lozano-Espinosa, M.; Garza, J.; Galván, M. Philos. Mag. 2017, 97, 284–297. DOI: https://doi.org/10.1080/14786435.2016.1258498. DOI: https://doi.org/10.1080/14786435.2016.1258498

Garza, J.; Vargas, R.; Aquino, N.; Sen, K. J. Chem. Sci. 2005, 117, 379–386. DOI: https://doi.org/10.1007/BF02708341. DOI: https://doi.org/10.1007/BF02708341

Duarte-Alcaráz, F.; Martínez-Sánchez, M.; Rivera-Almazo, M.; Vargas, R.; Rosas- Burgos, R.; Garza, J. J. Phys. B: At. Mol. Opt. Phys. 2019, 52, 135002. DOI: https://doi.org/10.1088/1361-6455/ab233b. DOI: https://doi.org/10.1088/1361-6455/ab233b

Cruz, S. A. Nucl. Instrum. Methods Phys. Res. B 2004, 222, 411–420. DOI: https://doi.org/10.1016/j.nimb.2004.03.063. DOI: https://doi.org/10.1016/j.nimb.2004.03.063

Cruz, S. A.; Chadderton, L. T. Radiat. Meas. 2005, 40, 765–769. DOI: https://doi.org/10.1016/j.radmeas.2005.06.029. DOI: https://doi.org/10.1016/j.radmeas.2005.06.029

Cruz, S. A.; Ley-Koo, E.; Cabrera-Trujillo, R. Phys. Rev. A 2008, 78, 032905. DOI: https://doi.org/10.1103/PhysRevA.78.032905. DOI: https://doi.org/10.1103/PhysRevA.78.032905

Cruz, S. A. Radiat. Eff. Defects Solids 2009, 164, 389–401. DOI: https://doi.org/10.1080/10420150902945603. DOI: https://doi.org/10.1080/10420150902945603

Hernández-Esparza, R.; Landeros-Rivera, B.; Vargas, R.; Garza, J. Ann. Phys. 2019, 531, 1800476. DOI: https://doi.org/10.1002/andp.201800476. DOI: https://doi.org/10.1002/andp.201800476

Pupyshev, V. A.; Montgomery, Jr. H. E. Ann. Phys. 2022, 534, 2200033. DOI: https://doi.org/10.1002/andp.202200033. DOI: https://doi.org/10.1002/andp.202200033

Colin-Rodriguez, R.; Cruz, S. A. J. Phys. B. At. Mol. Opt. Phys. 2010, 43, 235102. DOI: https://doi.org/10.1088/0953-4075/43/23/235102. DOI: https://doi.org/10.1088/0953-4075/43/23/235102

Cruz, S. A.; Soullard, J. Chem. Phys. Lett. 2004, 391, 138–142. DOI: https://doi.org/10.1016/j.cplett.2004.04.099. DOI: https://doi.org/10.1016/j.cplett.2004.04.099

Cruz, S. A.; Soullard, J. Int. J. Quantum Chem. 2001, 83, 271–278. DOI: https://doi.org/10.1002/qua.1053. DOI: https://doi.org/10.1002/qua.1053

Cruz, S. A.; Ley-Koo, E. Adv. Quantum Chem. 2015, 71, 69–113. DOI: https://doi.org/10.1016/bs.aiq.2015.03.001. DOI: https://doi.org/10.1016/bs.aiq.2015.03.001

Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Phys. Lett. A 2013, 377, 2062–2068. DOI: https://doi.org/10.1016/j.physleta.2013.05.048. DOI: https://doi.org/10.1016/j.physleta.2013.05.048

Martínez-Sánchez, M.-A.; Vargas, R.; Garza, J., in Asymptotic behavior: An overview; NOVA Science Publishers, 2020; pp 101–132.

Martínez -Sánchez, M.-A.; Vargas, R.; Garza, J. Quantum Reports 2019, 1, 208–218. DOI: https://doi.org/10.3390/quantum1020018. DOI: https://doi.org/10.3390/quantum1020018

Martínez -Sánchez, M.; Aquino, N.; Vargas, R.; Garza, J. Chem. Phys. Lett. 2017, 690, 14–19. DOI: https://doi.org/10.1016/j.cplett.2017.10.035. DOI: https://doi.org/10.1016/j.cplett.2017.10.035

Marin, J. L.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys. 1992, 25, 4365. DOI: https://doi.org/10.1088/0953-4075/25/21/006. DOI: https://doi.org/10.1088/0953-4075/25/21/006

Aquino, N.; Rojas, R. A.; Montgomery, H. E. Rev. Mex. Fis. 2018, 64, 399–406. DOI: https://doi.org/10.31349/RevMexFis.64.399. DOI: https://doi.org/10.31349/RevMexFis.64.399

Rojas, R. A.; Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Eur. Phys. J. D 2021, 75, 116. DOI: https://doi.org/10.1140/epjd/s10053-021-00122-7. DOI: https://doi.org/10.1140/epjd/s10053-021-00122-7

Cabrera-Trujillo, R.; Cruz, S. A. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 320, 51–56. DOI: https://doi.org/10.1016/j.nimb.2013.12.011. DOI: https://doi.org/10.1016/j.nimb.2013.12.011

Cabrera-Trujillo, R.; Méndez-Fragoso, R.; Cruz, S. A. J. Phys. B: At. Mol. Opt. Phys 2016, 49, 015005. DOI: https://doi.org/10.1088/0953-4075/49/1/015005. DOI: https://doi.org/10.1088/0953-4075/49/1/015005

Diaz-Garcia, C.; Cruz, S. A. Int. J. Quantum Chem. 2008, 108, 1572–1588. DOI: https://doi.org/10.1002/qua.21670. DOI: https://doi.org/10.1002/qua.21670

Cruz, S. A.; Diaz-Garcia, C.; Olivares-Pilon, H.; Cabrera-Trujillo, R. Radiat. Eff. Defects Solids 2016, 171, 123–134. DOI: https://doi.org/10.1080/10420150.2016.1147041. DOI: https://doi.org/10.1080/10420150.2016.1147041

Rodriguez-Bautista, M.; Díaz-García, C.; Navarrete-López, A. M.; Vargas, R.; Garza, J. J. Chem. Phys. 2015, 143, 034103. DOI: https://doi.org/10.1063/1.4926657. DOI: https://doi.org/10.1063/1.4926657

Martínez-Sánchez, M.; Rodriguez-Bautista, M.; Vargas, R.; Garza, J. Theor. Chem. Acc. 2016, 135, 207. DOI: https://doi.org/10.1007/s00214-016-1968-8. DOI: https://doi.org/10.1007/s00214-016-1968-8

Cruz, S.; Díaz-García, C.; Garrido-Aguirre, D.; Reyes-García, R. Eur. Phys. J. D 2021, 75, 143. DOI: https://doi.org/10.1140/epjd/s10053-021-00150-3. DOI: https://doi.org/10.1140/epjd/s10053-021-00150-3

Rodriguez-Bautista, M.; Vargas, R.; Aquino, N.; Garza, J. Int. J. Quantum Chem. 2018, 118, e25571. DOI: https://doi.org/10.1002/qua.25571. DOI: https://doi.org/10.1002/qua.25571

Olivares-Pilón, H.; Escobar-Ruiz, A. M.; Quiroz-Juarez, M. A.; Aquino, N. Mach. Learn.-Sci. Technol. 2023, 4, 015024. DOI: https://doi.org/10.1088/2632-2153/acb901. DOI: https://doi.org/10.1088/2632-2153/acb901

Cortés-Santiago, A.; Vargas, R.; Garza, J. J. Mex. Chem. Soc. 2012, 56, 270–274. DOI: https://doi.org/10.29356/jmcs.v56i3.289. DOI: https://doi.org/10.29356/jmcs.v56i3.289

García-Miranda, J. J.; Garza, J.; Ibarra, I. A.; Martínez, A.; Martínez-Sánchez, M. A.; Rivera-Almazo, M.; Vargas, R., in Chemical Reactivity in Confined Systems; John Wiley & Sons, Ltd, 2021; Chapter 4, pp 69–79. DOI: https://doi.org/10.1002/9781119683353.ch4. DOI: https://doi.org/10.1002/9781119683353.ch4

Cruz, S. A.; Soullard, J.; Gamaly, E. G. Phys. Rev. A. 1999, 60, 2207–2214. DOI: https://doi.org/10.1103/PhysRevA.60.2207. DOI: https://doi.org/10.1103/PhysRevA.60.2207

Mateos-Cortés, S.; Ley-Koo, E.; Cruz, S. Int. J. Quantum Chem. 2002, 86, 376–389. DOI: https://doi.org/10.1002/qua.10067. DOI: https://doi.org/10.1002/qua.10067

Colin-Rodriguez, R.; Diaz-Garcia, C.; Cruz, S. A. J. Phys. B-At. Mol. Opt. Phys. 2011, 44, 241001. DOI: https://doi.org/10.1088/0953-4075/44/24/241001. DOI: https://doi.org/10.1088/0953-4075/44/24/241001

Soullard, J.; Santamaria, R.; Cruz, S. Chem. Phys. Lett. 2004, 391, 187–190. DOI: https://doi.org/10.1016/j.cplett.2004.04.104. DOI: https://doi.org/10.1016/j.cplett.2004.04.104

Estañón, C. R.; Montgomery Jr, H. E.; Angulo, J. C.; Aquino, N. Int. J. Quantum Chem. 2024, 124, e27358. DOI: https://doi.org/10.1002/qua.27358. DOI: https://doi.org/10.1002/qua.27358

Rojas, R. A.; Aquino, N.; Castaño, E. Rev. Mex. Fis. E. 2023, 20, 010205. DOI: https://doi.org/10.31349/RevMexFisE.20.010205. DOI: https://doi.org/10.31349/RevMexFisE.20.010205

×

Downloads

Published

2024-09-30
x

Most read articles by the same author(s)

Loading...