Non-Woven Fabrics Based on Nylon 6 and Polipropylene Impregnated with Extracts of Rosmarinus Officinalis Obtained by Ultrasound to Provide Antibacterial Properties
DOI:
https://doi.org/10.29356/jmcs.v69i2.2074Keywords:
Nylon 6, polipropylene, extract, non-woven, antibacterial propertiesAbstract
Abstract. In the present research work, a composite with antibacterial properties against Staphylococcus aureus based on Nylon 6 and Polypropylene (PP) nonwoven fabric impregnated with extracts of Rosmarinus officinalis is presented. The extracts were obtained using ethanol as an extracting solvent getting yield percentages of 14.67 % and assisted by ultrasound with a frequency of 60 kHz. In the characterization by high-performance liquid chromatography coupled to mass, it was found that it was possible to extract families such as hydroxycinnamic acids, methoxycinnamic acids, phenolic terpenes, and catechins. The antioxidant and antibacterial capacity of Rosmarinus officinalis extracts against Staphylococcus aureus and Escherichia coli were proved. The composites obtained were characterized by FTIR-ATR infrared spectroscopy, demonstrating that when Nylon 6 and PP nonwoven fabrics were impregnated with the extracts of Rosmarinus officinalis, the corresponding bands present in the chemical structures of the secondary metabolites of Rosmarinus officinalis were shown, by means of thermogravimetric analysis characterization, the composites were found to be stable at high temperatures, and the composites were shown to possess antibacterial properties against Staphylococcus aureus.
Resumen. En el presente trabajo de investigación, se presenta la obtención de un compósito con propiedades antibacterianas frente a Staphylococcus aureus a base de tela no tejida de Nylon 6 y Polipropileno (PP) impregnado con extractos de Rosmarinus officinalis. Los extractos fueron obtenidos empleando etanol como disolvente extractor obteniendo porcentajes de rendimiento de 14.67 % y asistido por ultrasonido con una frecuencia de 60 kHz. En la caracterización por cromatografía líquida de alta resolución acoplado a masas se comprobó que se logró extraer familias como ácidos hidroxicinámicos, ácidos metoxicinámicos, terpenos fenólicos y catequinas. Se logró comprobar la capacidad antioxidante y antibacteriana de los extractos de Rosmarinus officinalis frente a Staphylococcus aureus y Escherichia coli. Los compósitos obtenidos se caracterizaron por espectroscopía de infrarrojo FTIR-ATR demostrando que al impregnar las telas no tejidas de Nylon 6 y PP con los extractos de Rosmarinus officinalis, se muestran las bandas correspondientes presentes en las estructuras químicas de los metabolitos secundarios de Rosmarinus officinalis, por medio de la caracterización de análisis termogravimétrico, se comprobó que los compósitos son estables a altas temperaturas y se demostró que los compósitos poseen propiedades antibacterianas frente a Staphylococcus aureus.
Downloads
References
Suksatan, W.; Jasim, S. A.; Widjaja, G.; Jalil, A. T.; Chupradit, S.; Ansari, M. J.; Mustafa, Y. F.; Hammoodi, H. A.; Mohammadi, M. J. Toxicol. Rep. 2022, 9, 284–292. DOI: https://doi.org/10.1016/j.toxrep.2022.02.013. DOI: https://doi.org/10.1016/j.toxrep.2022.02.013
Mohammadi, M. J.; Valipour, A.; Sarizadeh, G.; Shahriyari, H. A.; Geravandi, S.; Momtazan, M.; Bahmaei, J.; Tahery, N.; Afra, A.; Rastegarimehr, B. Clin. Epidemiol. Glob. Health. 2020, 8, 954– 957. DOI: https://doi.org/10.1016/j.cegh.2020.03.003. DOI: https://doi.org/10.1016/j.cegh.2020.03.003
Vilca Yahuita, J.; Rodríguez Auad, J. P.; Philco Lima, P. Revista Médica La Paz. 2020, 26.
Bockmühl, D. P.; Schages, J.; Rehberg, L. Microbial. Cell. 2019, 6, 299–306. DOI: https://doi.org/10.15698/mic2019.07.682. DOI: https://doi.org/10.15698/mic2019.07.682
Zapata Giraldo, J.; Botero Palacio, L. E.; Mejía Suaza, M. L.; Escobar Mora, N.; Ortiz Trujillo, I.; Galeano, B.; Hoyos Palacio, L.; Cuesta, D. Revista EIA. 2018, 15, 13–29. DOI: https://doi.org/10.24050/reia.v15i29.1166. DOI: https://doi.org/10.24050/reia.v15i29.1166
Maya Serna, M. del P.; González Echavarría, L.; Restrepo Osorio, A. Rev. Ing. Univ. Medellin. 2017, 16, 33–54. DOI: https://doi.org/10.22395/rium.v16n31a2. DOI: https://doi.org/10.22395/rium.v16n31a2
Fidan, H.; Stankov, S.; Ivanova, T.; Stoyanova, A.; Damyanova, S.; Ercisli, S. Ukr. Food J. 2019, 8, 227–238. DOI: https://doi.org/10.24263/2304-974X-2019-8-2-3. DOI: https://doi.org/10.24263/2304-974X-2019-8-2-3
Sassi, A.; Laouani, A.; Abdessalem, M. A. Ben; Jarray, I.; Nasrallah, H.; Ferdousi, F.; Nouira, M.; Mtiraoui, A.; Mahdhaoui, A.; Isoda, H.; Saguem, S. Phytomedicine Plus. 2025, 5, 100783. DOI: https://doi.org/10.1016/j.phyplu.2025.100783. DOI: https://doi.org/10.1016/j.phyplu.2025.100783
Contreras-Hernández, I.; Castillo-Campohermoso, M. A.; Díaz-Cervantes, E. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos. 2023, 8, 920–925. DOI: https://doi.org/10.29105/idcyta.v8i1.118. DOI: https://doi.org/10.29105/idcyta.v8i1.118
Shahidi, F.; Shi, J. Food Prod., Process. Nutr. 2019, 1, 4. DOI: https://doi.org/10.1186/s43014-019-0004-5. DOI: https://doi.org/10.1186/s43014-019-0004-5
Emire, S. A.; Hagos, A. D.; Eun, J. B.; Dadi, D. W. Food Technol. Biotechnol. 2019, 57, 77–86. DOI: https://doi.org/10.17113/ftb.57.01.19.5877.
Ramón, C.; Gil-Garzón, M. A. TecnoLógicas. 2021, 24. DOI: https://doi.org/10.22430/22565337.1822
Emire, S. A.; Hagos, A. D.; Eun, J. B.; Dadi, D. W. Food Technol. Biotechnol. 2019, 57, 77–86. DOI: https://doi.org/10.17113/ftb.57.01.19.5877. DOI: https://doi.org/10.17113/ftb.57.01.19.5877
Azuola, R.; Vargas, P. Tecnología en Marcha. 2007, 20, 30–40.
Chen, X.; Jia, X.; Yang, S.; Zhang, G.; Li, A.; Du, P.; Liu, L.; Li, C. LWT. 2022, 165, 113725. DOI: https://doi.org/10.1016/j.lwt.2022.113725. DOI: https://doi.org/10.1016/j.lwt.2022.113725
Cabello Alvarado, C.; Caicedo Cano, C.; Melo López, L.; Andrade Guel, M.; Cruz Delgado, V. J.; Ávila Orta, C. A. Revista Iberoamericana de Polímeros. 2019, 20, 105–117.
Caicedo, C.; Melo López, L.; Cabello Alvarado, C. J.; Cruz Delgado, V.; Ávila Orta, C. A. Dyna (Medellin). 2019, 86, 288–299. DOI: https://doi.org/10.15446/dyna.v86n211.80230. DOI: https://doi.org/10.15446/dyna.v86n211.80230
Maccaferri, E.; Mazzocchetti, L.; Benelli, T.; Zucchelli, A.; Giorgini, L. Compos B Eng. 2019, 166, 120–129. DOI: https://doi.org/10.1016/j.compositesb.2018.11.096. DOI: https://doi.org/10.1016/j.compositesb.2018.11.096
Nieto, G.; Ros, G.; Castillo, J. Medicines. 2018, 5, 98. DOI: https://doi.org/10.3390/medicines5030098. DOI: https://doi.org/10.3390/medicines5030098
Miao, J.; Li, X.; Fan, Y.; Zhao, C.; Mao, X.; Chen, X.; Huang, H.; Gao, W. Int. J. Food Sci. Technol. 2016, 51, 1244–1251. DOI: https://doi.org/10.1111/ijfs.13076. DOI: https://doi.org/10.1111/ijfs.13076
Alcívar Cedeño, U.; Burgos Briones, G.; Daza López, A.; Lucas Bailón, M. V. Colón Ciencias, Tecnologia y Negocios. 2021, 8, 47–59. DOI: https://doi.org/10.48204/j.colonciencias.v8n1a4. DOI: https://doi.org/10.48204/j.colonciencias.v8n1a4
Robles-Botero, M. V.; Ronquillo-de Jesús, E.; Quiroz-Reyes, C. N.; Aguilar-Méndez, M. A. TIP, Rev. Espec. Cienc. Quim.-Biol. 2020, 23. DOI: https://doi.org/10.22201/fesz.23958723e.2020.0.233. DOI: https://doi.org/10.22201/fesz.23958723e.2020.0.233
Flores, E.; Villastrigo, W.; Narro, R. I.; Esparza, S. C.; Dávila, M. D.; Cabello, C. J.; Castañeda, A. O.; Sáenz, A. Afinidad. 2022, 596, 1–10.
Karadağ, A. E.; Demirci, B.; Çaşkurlu, A.; Demirci, F.; Okur, M. E.; Orak, D.; Sipahi, H.; Başer, K. H. C. S. Afr. J. Bot. 2019, 125, 214–220. DOI: https://doi.org/10.1016/j.sajb.2019.07.039. DOI: https://doi.org/10.1016/j.sajb.2019.07.039
Silverstein, R. M.; Webster, F. X., in: Spectrometric Identification of Organic Compounds, Sixth.; State University of New York, 1996.
Bendif, H.; Boudjeniba, M.; Djamel Miara, M.; Biqiku, L.; Bramucci, M.; Caprioli, G.; Lupidi, G.; Quassinti, L.; Sagratini, G.; Vitali, L. A.; Vittori, S.; Maggi, F. Food Chem. 2017, 218, 78–88. DOI: https://doi.org/10.1016/j.foodchem.2016.09.063. DOI: https://doi.org/10.1016/j.foodchem.2016.09.063
Robinson, T.; Bronson, B.; Gogolek, P.; Mehrani, P. Waste Management. 2016, 48, 265–274. DOI: https://doi.org/10.1016/j.wasman.2015.11.018. DOI: https://doi.org/10.1016/j.wasman.2015.11.018
Flores, E.; Villastrigo, W.; Narro, R. I.; Esparza, S. A.; Dávila, M. D.; Cabello, C. J.; Castañeda, A. O.; Sáenz, A. Afinidad. 2022, 596, 1-10.
Briones, J.; Pascual, L. I.; Ignacio, C.; Pascual, L. A., in: Desing and Characterization of Liquid Nanocapsules of Rosemary Oil (Rosmarinus Officinalis L.). Universidad Veracruzana, Xalapa, México, 2019.
Perales Flores, J. D.; Verde-Star, Dra. M. J.; Viveros Valdéz, Dr. J. E.; Barrón-González, Dra. M. P.; Garza-Padrón, Dra. R. A.; Aguirre Arzola, Dr. V. E.; Rodríguez Garza, Dr. R. G. Biotecnia. 2022, 25, 88–93. DOI: https://doi.org/10.18633/biotecnia.v25i1.1773. DOI: https://doi.org/10.18633/biotecnia.v25i1.1773
Chen, G.-L.; Chen, S.-G.; Xie, Y.-Q.; Chen, F.; Zhao, Y.-Y.; Luo, C.-X.; Gao, Y.-Q. J. Funct. Foods. 2015, 17, 243–259. DOI: https://doi.org/10.1016/j.jff.2015.05.028. DOI: https://doi.org/10.1016/j.jff.2015.05.028
Serra Bisbal, J. J.; Melero Lloret, J.; Martínez Lozano, G.; Fagoaga, C. Interdisciplinary Ibero- American Journal of Methods, Modelling and Simulation. 2020, 12, 71–90. DOI: https://doi.org/10.46583/nereis_2020.12.577. DOI: https://doi.org/10.46583/nereis_2020.12.577
Martínez Jiménez, J. A.; Montero Recalde, M. A., in: Evaluación Del Efecto Bactericida Del Extracto de Romero (Rosmarinus Officinalis) in vitro En Cepa Certificada de Escherichia Coli, Facultad de Ciencias Agropecuarias, Cevallos, Ecuador, 2017.
Vela Llanos, R.; Acaro Chuquicaña, F. E., in: Efecto Antibacteriano in vitro de La Mezcla Del Aceite Esencial de Origanum Vulgare “Orégano” y Rosmarinus Officinalis “Romero” Frente a Staphylococcus aureus y Escherichia coli, Facultad de medicina humana y ciencias de la salud, Cajamarca, Perú, 2022.
Rodenas Egoavil, D. C.; Rodríguez Valqui, A.; Vilchez Caceda, H., in: Efecto Antibacteriano Del Extracto Etanolico de Tallos de Rosmarinus officinalis L. (Romero) En Cultivos de “Staphylococcus Aureus” Estudio in Vitro, Facultad de ciencias farmacéuticas y bioquímica, Lima, Perú, 2018.
Churango Valdez, J.; Vásquez Alzamora, C. A.; Sanchez Quicio, G. D., in: Efecto Antibacteriano In-Vitro de Los Extractos de Rosmarinus officinalis (Romero) y Mentha spicata (Hierba Buena) Sobre Staphylococcus aureus, Universidad de Huancayo, Huancayo, Perú, 2021.
Arévalo, Y.; Robledo, S.; Muñoz, D. L.; Granados Falla, D.; Cuca, L. E.; Delgado, G. R Rev. Colomb. Cienc. Quim.-Farm. 2009, 38, 131–141.
Guellouma, F. Z.; Boussoussa, H.; Khachba, I.; Yousfi, M.; Ziane Khoudja, I.; Bourahla, I. Nat. Prod. Res. 2024, 38, 796–806. DOI: https://doi.org/10.1080/14786419.2023.2201884. DOI: https://doi.org/10.1080/14786419.2023.2201884
Andrade-Guel, M.; Ávila-Orta, C. A.; Cabello-Alvarado, C.; Cadenas-Pliego, G.; Esparza-González, S. C.; Pérez-Alvarez, M.; Quiñones-Jurado, Z. V. Polymers (Basel). 2021, 13, 1888. DOI: https://doi.org/10.3390/polym13111888. DOI: https://doi.org/10.3390/polym13111888


Downloads
Published
Issue
Section
License
Copyright (c) 2025 Wendy Yaneth Villastrigo-López, Aide Sáenz-Galindo, Miriam Desiree Dávila-Medina, Adali Oliva Castañeda-Facio, Christian Javier Cabello-Alvarado

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
