Impact of L-Pyroglutamic Acid on the Solubility of Puerarin: Preparation, Solid-State Characterization and Physicochemical Evaluation of Puerarin-L-Pyroglutamic Acid Co-Crystal

Authors

  • Muhammad Inam Guangzhou Medical University https://orcid.org/0000-0002-8520-4947
  • Muhammad Jamshed Khyber medical University Peshawar
  • Idrees Rehman University of Science and Technology Bannu
  • Wahib Noor Khan University of Science and Technology Bannu
  • Muhammad Iqbal Zaman University of Science and Technology Bannu
  • Muhammad Adnan Akram Zhejiang University
  • Tayba Chudhary Zhejiang University

DOI:

https://doi.org/10.29356/jmcs.v67i2.1916

Keywords:

Oral solubility, co-crystal, co-former, physicochemical properties, puerarin, solubility, dissolution

Abstract

Abstract. Drug solubility plays a significant role in the successful therapeutic formulation. The objective of this work is enhancing the water solubility of Puerarin. We successfully synthesized a novel crystalline phase co-crystal of Puerarin (PUE) with L-pyroglutamic acid (PG) via recrystallization method and characterized by various solid-state characterization techniques. PXRD pattern shows the crystallinity phase co-crystal. The DSC analysis of co-crystal shows change in the thermal behavior compared with a pure form of PUE and PG. The FT-IR analysis shows change in the functional group frequency due to H-bonding interaction between PUE and PG molecule. The solubility of Pure PUE and co-crystal investigated in Pure water, pH 6.8 phosphate buffer solution and pH 1.2 acidic medium.  co-crystal reveals improved solubility when compared with pure form of PUE. The time-dependent in vitro dissolution rate of co-crystal was more significant compared to the pure commercial form of PUE, demonstrating that co-crystal could be used as a useful product for pharmaceutical formulation with enhance properties.

Resumen. La solubilidad de un fármaco juega un papel importante en su formulación farmacútica final. El objetivo de este trabajo es incrementar la solubilidad acuosa del compuesto puerarina. En este sentido, reportamos la síntesis de una nueva matriz cristalina, formada a través de la recristalización de una mezcla de puerarina (PUE) y ácido L-piroglutámico (PG). El patron de análisis DSC del co-cristal mostró un cambio términco comparado con PUE y PG puros. El análisis detallado del co-cristal por medio de infrarrojo (FT-IR) mostró un cambio en la fecuancia de absorción en la región característica de enlaces de hidrógeno entre PUE y PG. Comparamos la solubilidad de una muestra pura de PUE y la de una muestra del co-cristal en agua, en un buffer de fosfátos pH 6.8, y en medio acídico a pH 1.2. La muestra del co-cristal mostró un aumento significativo en la solubilidad acuosa, comparada con la de PUE en todos los medios. Además, el perfil de disolución de una mestra del co-cristal fue significativamente mayor que el perfil de disolución de PUE, demostrando que esta forma de co-cristalización es un procedimiento altamente efectivo para incrementar la solubilidad acuosa de PUE.

 

Downloads

Download data is not yet available.

Author Biographies

Muhammad Inam, Guangzhou Medical University

Department of Pharmacy

Muhammad Jamshed , Khyber medical University Peshawar

Northwest school of medicine

Idrees Rehman, University of Science and Technology Bannu

Department of Chemistry

Wahib Noor Khan, University of Science and Technology Bannu

Department of Chemistry

Muhammad Iqbal Zaman, University of Science and Technology Bannu

Department of Chemistry

Muhammad Adnan Akram, Zhejiang University

Department of polymer Science and Engineering

Tayba Chudhary, Zhejiang University

Department of polymer Science and Engineering

References

Duggirala, N.K.; Perry, M. L.; Almarsson, O.; Zaworotko, M. J. Chem. Commun. 2016, 52, 640–655. DOI: https://doi.org/10.1039/C5CC08216A

Chen, Y.; Li, L.; Yao, J.; Ma, Y. Y.; Chen, J. M.; Lu, T. B. Cryst. Growth. Des. 2016, 16, 2923–2930. DOI: https://doi.org/10.1021/acs.cgd.6b00266

Karimi-Jafari, M.; Padrela, L.; Walker, G. M.; Croker, D. Cryst. Growth. Des. 2018, 18, 6370–6387. DOI: https://doi.org/10.1021/acs.cgd.8b00933

Fael, H.; Barbas, R.; Prohens, R.; Ràfols, C.; Fuguet, E. Pharmaceutics. 2022, 14: 29. DOI: https://doi.org/10.3390/pharmaceutics14112310

Barbas, R.; Kumar, V.; Vallcorba, O.; Prohens, R.; Frontera, A. Crystals. 2020, 10, 1126. DOI: https://doi.org/10.3390/cryst10121126

Shan, N.; Perry, M. L.; Weyna, D. R.; Zaworotko, M. J. Drug. Metab. Toxicol. 2014, 10, 1255–1271. DOI: https://doi.org/10.1517/17425255.2014.942281

Nangia, A.; Desiraju, G.R. Acta Crystallogr. 1998, 54, 934-944. DOI: https://doi.org/10.1107/S0108767398008551

Aneta, M.; Szafert, S. J. Organometallic Chem. 2017, 847, 173–183. DOI: https://doi.org/10.1016/j.jorganchem.2017.05.044

Bo, Y.; Fang, J.; Zhang, Z.; Xue, J.; Liu, J.; Hong, Z.; Du, Y. Pharmaceutics. 2021, 13, 1303. DOI: https://doi.org/10.3390/pharmaceutics13081303

Zhou, Y.X.; Zhang, H.; Peng, C. Phytother. Res. 2014, 28, 961-975. DOI: https://doi.org/10.1002/ptr.5083

Kato, E.; Kawabata, J. Bioorg. Med. Chem. Lett. 2010, 20, 4333-4336. DOI: https://doi.org/10.1016/j.bmcl.2010.06.077

Yan, J.; Guan, Z.; Zhu, W.; Zhong, L.; Qiu, Z.Q.; Yue. P.; Wu, W.T.; Liu, J.; Huang, X. Pharmaceutics. 2020, 12, 216. DOI: https://doi.org/10.3390/pharmaceutics12030216

Li, H.; Dong, L.; Liu, Y.; Wang, G.; Wang, G.; Qiao, Y. Int. J. Pharm. 2014, 8, 466. DOI: https://doi.org/10.1016/j.ijpharm.2014.03.014

Inam, M.; Jiajia, W.; Jie S.; Phan, C.U. Tang, G.; Hu, X. Crystals. 2018, 8, 336. DOI: https://doi.org/10.3390/cryst8090336

Williams, H. D.; Trevaskis, N. L.; Charman, S. A.; Shanker, R. M.; Charman, W. N.; Pouton, C. W.; Porter, C. J. Pharmacol. Rev. 2013, 65, 315-499. DOI: https://doi.org/10.1124/pr.112.005660

Francisco, J. A.; Carolina, A.; Antonio, F.; Rafael, B.; Rafel, P.; Milena, D.; Alicia, D.; Jaime, G.; Duane, C. Pharmaceutics. 2021, 13, 2140.

Metrangolo, P.; Neukirch, H.; Pilati, T.; Resnati, G. Chem. Res. 2005, 38, 386-395. DOI: https://doi.org/10.1021/ar0400995

Liu, Y.; Lin, S. X.; Niu, R. J.; Liu, Q.; Zhang, W .H.; Young, D. J. Chem. Plus Chem. 2020, 85, 832-837. DOI: https://doi.org/10.1002/cplu.202000175

Newman, A.W.; Byrn, S. R. Drug. Disco Today. 2003, 8, 898-905. DOI: https://doi.org/10.1016/S1359-6446(03)02832-0

Sambas-evam, K. Int. J. Mol. Sci. 2003, 14, 3671.

Sugano, K.; Kataoka, M.; Mathews, C. C. S.; Yamashita, S. Eur. J. Pharm. Sci. 2010, 40, 118-124. DOI: https://doi.org/10.1016/j.ejps.2010.03.011

Ramesh, K.; Shekar, B.C.; Khadgapathi, P.; Bhikshapathi, D.; Renuka, K. Int. J. Drug. Deliv. 2015, 7, 32-43.

Inam, M.; Lu, L.; Wang. J.; Ka-Xi, Y.; Phan, C. U.; Jie, S.; Wen-Hua, Z.; Tang G.; Hu, X. Int. J. Mol. Sci. 2021, 22, 928. DOI: https://doi.org/10.3390/ijms22020928

×

Downloads

Published

2023-04-01

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...