Effect of the Structural and Electronic Properties of Rh/CeXZr1-XO2 Catalysts on the Low-temperature Ethanol Steam-reforming

Authors

DOI:

https://doi.org/10.29356/jmcs.v65i1.1244

Keywords:

Reforming, ethanol, hydrogen, Rh, CeXZr1–XO2, CeO2

Abstract

Abstract. Rh catalysts supported on CexZr1–xO2 (with x= 0-1) materials were synthesized by precipitation method. The influence of the two different cerium salt precursors, ammonium cerium(IV) nitrate and cerium(III) nitrate hexahydrate, over the structure and catalytic activity in steam reforming reaction was investigated. The synthesized catalysts were characterized by various techniques, such as N2 adsorption-desorption, temperature-programmed desorption, X-ray diffraction, Raman spectroscopy, diffuse reflectance UV-Vis, and X-ray photoelectron spectroscopy. The use of ammonium cerium (IV) nitrate as a cerium precursor resulted in solid CexZr1-xO2 solutions with improved oxygen mobility and specific surface area. The catalytic evaluation exhibited the support composition and structure impact on its activity and product yield. The Rh supported on Ce0.5Zr0.5O2 solid solution rendered the higher activity and H2 and CO2 yields among both series, related to improved oxygen mobility and greater Rh0 dispersion. The formation of surface defects adjacent to Rh clusters by strong metal-support interaction effect was suggested by Raman analysis. The close contact between the Rh0 site and oxygen vacancy could be favoring cyclic-like ethanol adsorption and favored the breaking of the C–C bond and further oxidation of adsorbed CO and CHX species.

 

Resumen. Los catalizadores de Rh soportados en materiales CexZr1 – xO2 (x= 0-1) se sintetizaron mediante el método de precipitación. En este trabajo se investiga la influencia de dos precursores de sal de cerio diferentes, nitrato de amonio cerio (IV) y nitrato de cerio (III) hexahidrato, sobre la estructura y la actividad catalítica en la reacción de reformado con vapor. Los catalizadores sintetizados se caracterizaron mediante diversas técnicas, tal como fisisorción de N2, reducción a temperatura programada, difracción de rayos X, espectroscopía Raman, reflectancia difusa UV-Vis y espectroscopía de fotoelectrones de rayos X. El uso de nitrato de amonio cerio (IV) como precursor de cerio dio como resultado la obtención de soluciones sólidas de CexZr1-xO2 con una movilidad del oxígeno y área específica mejorada. La evaluación catalítica mostró el impacto de la composición y estructura del soporte sobre la conversión y rendimiento de productos. El catalizador Rh soportado en la solución sólida Ce0.5Zr0.5O2 proporcionó la mayor actividad y rendimientos de H2 y CO2 entre ambas series, relacionados con la movilidad del oxígeno mejorada y mayor dispersión de Rh0. El análisis Raman sugirió la formación de defectos superficiales adyacentes a los grupos de Rh debido a fuertes interacciones metal-soporte. El contacto estrecho entre el sitio Rh0 y la vacante de oxígeno estaría favoreciendo la adsorción del etanol en configuración cíclica y favoreciendo la ruptura del enlace C-C y la oxidación de las especies de CO y CHX adsorbidas.

Downloads

Download data is not yet available.

Author Biographies

O.G. Olvera-Olmedo, The University of British Columbia

Department of Materials Engineering

J.N. Díaz de León, Universidad Nacional Autónoma de México

Centro de Nanociencias y Nanotecnología

V.A. Suárez-Toriello, Centro de Innovación Aplicada en Tecnologías Competitivas

C. CONACYT-CIATEC A.C

J.A. de los Reyes, Universidad Autónoma Metropolitana-Iztapalapa

División de Ciencias Básicas e Ingeniería

References

Sherif, S. A.; Goswami, D. Y.; Stefanakos, E. K.; Steinfeld, A., Handbook of Hydrogen Energy. Taylor & Francis: 2014. https://books.google.com.mx/books?id=jGkLBAAAQBAJ DOI: https://doi.org/10.1201/b17226

Bion, N.; Duprez, D.; Epron, F., ChemSusChem 2012, 5 (1), 76-84. DOI: https://doi.org/10.1002/cssc.201100400 DOI: https://doi.org/10.1002/cssc.201100400

Dou, Y.; Sun, L.; Ren, J.; Dong, L., In Hydrogen Economy, 2017; pp 277-305. DOI: https://doi.org/10.1016/b978-0-12-811132-1.00010-9 DOI: https://doi.org/10.1016/B978-0-12-811132-1.00010-9

Chen, S.; Pei, C.; Gong, J., Energy Environ. Sci. 2019, 12 (12), 3473-3495. DOI: https://doi.org/10.1039/c9ee02808k DOI: https://doi.org/10.1039/C9EE02808K

Wang, W.; Wang, Y. Q., Int. J. Energy Res. 2008, 32 (15), 1432-1443. DOI: https://doi.org/10.1002/er.145 9 DOI: https://doi.org/10.1002/er.1459

Bepari, S.; Kuila, D., Int. J. Hydrogen Energy 2020, 45 (36), 18090-18113. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.003 DOI: https://doi.org/10.1016/j.ijhydene.2019.08.003

Ogo, S.; Sekine, Y., Fuel Process. Technol. 2020, 199. DOI: https://doi.org/10.1016/j.fuproc.2019.106238 DOI: https://doi.org/10.1016/j.fuproc.2019.106238

Riani, P.; Garbarino, G.; Cavattoni, T.; Canepa, F.; Busca, G., Int. J. Hydrogen Energy 2019, 44 (50), 27319-27328. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.228 DOI: https://doi.org/10.1016/j.ijhydene.2019.08.228

Turczyniak, S.; Greluk, M.; S?owik, G.; Gac, W.; Zafeiratos, S.; Machocki, A., ChemCatChem 2017, 9 (5), 782-797. DOI: https://doi.org/10.1002/cctc.201601343 DOI: https://doi.org/10.1002/cctc.201601343

Damyanova, S.; Pawelec, B.; Palcheva, R.; Karakirova, Y.; Sanchez, M. C. C.; Tyuliev, G.; Gaigneaux, E.; Fierro, J. L. G., Appl. Catal., B 2018, 225, 340-353. DOI: https://doi.org/10.1016/j.apcatb.2017.12.002 DOI: https://doi.org/10.1016/j.apcatb.2017.12.002

Konsolakis, M.; Ioakimidis, Z.; Kraia, T.; Marnellos, G., Catalysts 2016, 6 (3). DOI: https://doi.org/10.3390/catal6030039 DOI: https://doi.org/10.3390/catal6030039

Sharma, P. K.; Saxena, N.; Roy, P. K.; Bhatt, A., Int. J. Hydrogen Energy 2016, 41 (14), 6123-6133. DOI: https://doi.org/10.1016/j.ijhydene.2015.09.137 DOI: https://doi.org/10.1016/j.ijhydene.2015.09.137

Zhurka, M. D.; Lemonidou, A. A.; Kechagiopoulos, P. N., Catal. Today 2020. DOI: https://doi.org/10.1016/j.cattod.2020.03.020 DOI: https://doi.org/10.1016/j.cattod.2020.03.020

Bilal, M.; Jackson, S. D., Appl. Catal., A 2017, 529, 98-107. DOI: https://doi.org/10.1016/j.apcata.2016.10.020 DOI: https://doi.org/10.1016/j.apcata.2016.10.020

González Vargas, O. A.; de los Reyes Heredia, J. A.; Wang, J. A.; Chen, L. F.; Montesinos Castellanos, A.; Llanos, M. E., Int. J. Hydrogen Energy 2013, 38 (32), 13914-13925. DOI: https://doi.org/10.1016/j.ijhydene.2013.08.077 DOI: https://doi.org/10.1016/j.ijhydene.2013.08.077

da Silva, A. M.; de Souza, K. R.; Jacobs, G.; Graham, U. M.; Davis, B. H.; Mattos, L. V.; Noronha, F. B., Appl. Catal., B 2011, 102 (1-2), 94-109. DOI: https://doi.org/10.1016/j.apcatb.2010.11.030 DOI: https://doi.org/10.1016/j.apcatb.2010.11.030

Liguras, D. K.; Kondarides, D. I.; Verykios, X. E., Appl. Catal., B 2003, 43 (4), 345-354. DOI: https://doi.org/10.1016/s0926-3373(02)00327-2 DOI: https://doi.org/10.1016/S0926-3373(02)00327-2

Melchionna, M.; Trovarelli, A.; Fornasiero, P., In Cerium Oxide (CeO?): Synthesis, Properties and Applications, 2020; pp 13-43. DOI: https://doi.org/10.1016/b978-0-12-815661-2.00002-5 DOI: https://doi.org/10.1016/B978-0-12-815661-2.00002-5

Chen, L. F.; González, G.; Wang, J. A.; Noreña, L. E.; Toledo, A.; Castillo, S.; Morán-Pineda, M., Appl. Surf. Sci. 2005, 243 (1-4), 319-328. DOI: https://doi.org/10.1016/j.apsusc.2004.09.074 DOI: https://doi.org/10.1016/j.apsusc.2004.09.074

Wang, J. A.; González, G.; Chen, L.; Valenzuela, M. A.; Moran-Pineda, M.; Vázquez, A.; Castillo, S., React. Kinet. Catal. Lett. 2007, 90 (2), 381-387. DOI: https://doi.org/10.1007/s11144-007-4938-2 DOI: https://doi.org/10.1007/s11144-007-4938-2

Barbato, P. S.; Colussi, S.; Di Benedetto, A.; Landi, G.; Lisi, L.; Llorca, J.; Trovarelli, A., Appl. Catal., A 2015, 506, 268-277. DOI: https://doi.org/10.1016/j.apcata.2015.09.018 DOI: https://doi.org/10.1016/j.apcata.2015.09.018

Mattos, L.; Noronha, F., J. Catal. 2005, 233 (2), 453-463. DOI: https://doi.org/10.1016/j.jcat.2005.04.022 DOI: https://doi.org/10.1016/j.jcat.2005.04.022

Diagne, C.; Idriss, H.; Pearson, K.; Gómez-García, M. A.; Kiennemann, A., C.R. Chim. 2004, 7 (6-7), 617-622. DOI: https://doi.org/10.1016/j.crci.2004.03.004 DOI: https://doi.org/10.1016/j.crci.2004.03.004

Maia, T. A.; Assaf, J. M.; Assaf, E. M., Mater. Chem. Phys. 2012, 132 (2-3), 1029-1034. DOI: https://doi.org/10.1016/j.matchemphys.2011.12.058 DOI: https://doi.org/10.1016/j.matchemphys.2011.12.058

Hao, Y.; Yang, C.-K.; Haile, S. M., Chem. Mater. 2014, 26 (20), 6073-6082. DOI: https://doi.org/10.1021/cm503131p DOI: https://doi.org/10.1021/cm503131p

Letichevsky, S.; Tellez, C. A.; Avillez, R. R. d.; Silva, M. I. P. d.; Fraga, M. A.; Appel, L. G., Appl. Catal., B 2005, 58 (3-4), 203-210. DOI: https://doi.org/10.1016/j.apcatb.2004.10.014 DOI: https://doi.org/10.1016/j.apcatb.2004.10.014

Rossignol, S.; Madier, Y.; Duprez, D., Catal. Today 1999, 50 (2), 261-270. DOI: https://doi.org/10.1016/s0920-5861(98)00508-2 DOI: https://doi.org/10.1016/S0920-5861(98)00508-2

Yashima, M., Catal. Today 2015, 253, 3-19. DOI: https://doi.org/10.1016/j.cattod.2015.03.034 DOI: https://doi.org/10.1016/j.cattod.2015.03.034

Trovarelli, A.; Fornasiero, P., Catalysis by Ceria and Related Materials. Imperial College Press: 2013. DOI: https://doi.org/10.1142/p870

Kosacki, I.; Suzuki, T.; Anderson, H. U.; Colomban, P., Solid State Ionics 2002, 149 (1-2), 99-105. DOI: https://doi.org/10.1016/s0167-2738(02)00104-2 DOI: https://doi.org/10.1016/S0167-2738(02)00104-2

Gouadec, G.; Colomban, P., Prog. Cryst. Growth Charact. Mater. 2007, 53 (1), 1-56. DOI: https://doi.org/10.1016/j.pcrysgrow.2007.01.001 DOI: https://doi.org/10.1016/j.pcrysgrow.2007.01.001

Oliete, P. B.; Orera, A.; Sanjuán, M. L., J. Raman Spectrosc. 2019, 51 (3), 514-527. DOI: https://doi.org/10.1002/jrs.5797 DOI: https://doi.org/10.1002/jrs.5797

Cao, L.; Pan, L.; Ni, C.; Yuan, Z.; Wang, S., Fuel Process. Technol. 2010, 91 (3), 306-312. DOI: https://doi.org/10.1016/j.fuproc.2009.11.001 DOI: https://doi.org/10.1016/j.fuproc.2009.11.001

Wakita, T.; Yashima, M., Appl. Phys. Lett. 2008, 92 (10). DOI: https://doi.org/10.1063/1.2890718 DOI: https://doi.org/10.1063/1.2890718

Acharya, S. A.; Gaikwad, V. M.; D'Souza, S. W.; Barman, S. R., Solid State Ionics 2014, 260, 21-29. DOI: https://doi.org/10.1016/j.ssi.2014.03.008 DOI: https://doi.org/10.1016/j.ssi.2014.03.008

Kainbayev, N.; Sriubas, M.; Virbukas, D.; Rutkuniene, Z.; Bockute, K.; Bolegenova, S.; Laukaitis, G., Coatings 2020, 10 (5). DOI: https://doi.org/10.3390/coatings10050432 DOI: https://doi.org/10.3390/coatings10050432

Anjaneya, K. C.; Nayaka, G. P.; Manjanna, J.; Govindaraj, G.; Ganesha, K. N., J. Alloys Compd. 2013, 578, 53-59. DOI: https://doi.org/10.1016/j.jallcom.2013.05.010 DOI: https://doi.org/10.1016/j.jallcom.2013.05.010

Daturi, M.; Finocchio, E.; Binet, C.; Lavalley, J. C.; Fally, F.; Perrichon, V., J. Phys. Chem. B 1999, 103 (23), 4884-4891. DOI: https://doi.org/10.1021/jp9905981 DOI: https://doi.org/10.1021/jp9905981

Overbury, S. H.; Huntley, D. R.; Mullins, D. R.; Glavee, G. N., Catal. Lett. 1998, 51 (3/4), 133-138. DOI: https://doi.org/10.1023/a:1019086428874 DOI: https://doi.org/10.1023/A:1019086428874

Hashimoto, K.; Toukai, N.; Hamada, R.; Imamura, S., Catal. Lett. 1998, 50 (3/4), 193-198. DOI: https://doi.org/10.1023/a:1019047925723 DOI: https://doi.org/10.1023/A:1019047925723

Bernal, S.; Calvino, J. J.; Cifredo, G. A.; Laachir, A.; Perrichon, V.; Herrmann, J. M., Langmuir 1994, 10 (3), 717-722. DOI: https://doi.org/10.1021/la00015a020 DOI: https://doi.org/10.1021/la00015a020

Sheng, P. Y.; Yee, A.; Bowmaker, G. A.; Idriss, H., J. Catal. 2002, 208 (2), 393-403. DOI: https://doi.org/10.1006/jcat.2002.3576 DOI: https://doi.org/10.1006/jcat.2002.3576

Damyanova, S.; Perez, C. A.; Schmal, M.; Bueno, J. M. C., Appl. Catal., A 2002, 234 (1-2), 271-282. DOI: https://doi.org/10.1016/s0926-860x(02)00233-8 DOI: https://doi.org/10.1016/S0926-860X(02)00233-8

Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C., Appl. Catal., A 2010, 377 (1-2), 16-26. DOI: https://doi.org/10.1016/j.apcata.2010.01.013 DOI: https://doi.org/10.1016/j.apcata.2010.01.013

Liu, K.-Q.; Kuang, C.-X.; Zhong, M.-Q.; Shi, Y.-Q.; Chen, F., Opt. Mater. 2013, 35 (12), 2710-2715. DOI: https://doi.org/10.1016/j.optmat.2013.08.012 DOI: https://doi.org/10.1016/j.optmat.2013.08.012

Sifontes, A. B.; Rosales, M.; Méndez, F. J.; Oviedo, O.; Zoltan, T., J. Nanomater 2013, 2013, 1-9. DOI: https://doi.org/10.1155/2013/265797 DOI: https://doi.org/10.1155/2013/265797

Gutiérrez?Alejandre, A.; Ramírez, J.; Busca, G., Catal. Lett. 1998, 56 (1), 29-33. DOI: https://doi.org/10.1023/a:1019076121915 DOI: https://doi.org/10.1023/A:1019076121915

Kuznetsova, T. G.; Sadykov, V. A., Kinet. Catal. 2008, 49 (6), 840-858. DOI: https://doi.org/10.1134/s0023158408060098 DOI: https://doi.org/10.1134/S0023158408060098

Barton, D. G.; Shtein, M.; Wilson, R. D.; Soled, S. L.; Iglesia, E., J. Phys. Chem. B 1999, 103 (4), 630-640. DOI: https://doi.org/10.1021/jp983555d DOI: https://doi.org/10.1021/jp983555d

Corma, A.; Atienzar, P.; Garcia, H.; Chane-Ching, J. Y., Nat. Mater. 2004, 3 (6), 394-7. DOI: https://doi.org/10.1038/nmat1129 DOI: https://doi.org/10.1038/nmat1129

Patsalas, P.; Logothetidis, S.; Sygellou, L.; Kennou, S., Physical Review B 2003, 68 (3). DOI: https://doi.org/10.1103/PhysRevB.68.035104 DOI: https://doi.org/10.1103/PhysRevB.68.035104

Lin, Q.; Shimizu, K.-i.; Satsuma, A., Appl. Catal., A 2012, 419-420, 142-147. DOI: https://doi.org/10.1016/j.apcata.2012.01.021 DOI: https://doi.org/10.1016/j.apcata.2012.01.021

Durap, F.; Zahmak?ran, M.; Özkar, S., Appl. Catal., A 2009, 369 (1-2), 53-59. DOI: https://doi.org/10.1016/j.apcata.2009.08.031 DOI: https://doi.org/10.1016/j.apcata.2009.08.031

Korsvik, C.; Patil, S.; Seal, S.; Self, W. T., Chem. Commun. 2007, (10), 1056-8. DOI: https://doi.org/10.1039/b615134e DOI: https://doi.org/10.1039/b615134e

Damyanova, S.; Pawelec, B.; Arishtirova, K.; Huerta, M. V. M.; Fierro, J. L. G., Appl. Catal., A 2008, 337 (1), 86-96. DOI: https://doi.org/10.1016/j.apcata.2007.12.005 DOI: https://doi.org/10.1016/j.apcata.2007.12.005

Moulder, J. F.; Chastain, J., Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation: 1992.

Maeda, K.; Lu, D.; Teramura, K.; Domen, K., J. Mater. Chem. 2008, 18 (30). DOI: https://doi.org/10.1039/b808484 j DOI: https://doi.org/10.1039/b808484j

Singh, N.; Mubeen, S.; Lee, J.; Metiu, H.; Moskovits, M.; McFarland, E. W., Energy Environ. Sci. 2014, 7 (3), 978-981. DOI: https://doi.org/10.1039/c3ee43709d DOI: https://doi.org/10.1039/C3EE43709D

Mavrikakis, M.; Doren, D. J.; Barteau, M. A., J. Phys. Chem. B 1998, 102 (2), 394-399. DOI: https://doi.org/10.1021/jp971450p DOI: https://doi.org/10.1021/jp971450p

×

Published

2021-01-01

Issue

Section

Special Issue Dedicated to Heterogenous Catalysis Research done by Mexican Group
x

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...