Chemical Constituents from Artemisia annua and Vitex agnus-castus as New Aromatase Inhibitors: In-vitro and In-silico Studies

Authors

  • Hend M. Dawood Alexandria University
  • Eman Shawky Alexandria University
  • Hala M. Hammoda Alexandria University
  • Aly M. Metwally Alexandria University
  • Reham S. Ibrahim Alexandria University

DOI:

https://doi.org/10.29356/jmcs.v64i4.1236

Keywords:

Aromatase inhibitors, Artemisia annua L. and Vitex agnus-castus L., β-sitosterol, myricetin-3,7,4'-trimethyl ether, domesticoside

Abstract

Abstract. Aromatase inhibitors are important in certain cancers such as breast cancer in postmenopausal women. In this study, eight constituents from Artemisia annua L. and Vitex agnus-castus L. were isolated and evaluated for their aromatase inhibitory activity using in-vitro fluorimetric assay. All tested compounds possessed moderate to strong inhibitory activity with β-sitosterol and myricetin-3,7,4'-trimethyl ether  being the most active with IC50 values of 0.13 and 0.25 μM, respectively. Compounds were subjected to induced fit docking (IFD) where β-sitosterol, possessed comparable interaction patterns to the natural co-crystallized ligand androstenedione.  Furthermore, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME&T)‎ properties of the compounds were evaluated revealing that all compounds' properties - except some of β- sitosterol related to solubility - lied within the acceptable range for human use, thereby considered as competent drug-like molecules. These findings could qualify β- sitosterol, myricetin-3,7,4'-trimethyl ether and domesticoside   as lead compounds for the development of new aromatase inhibitors.

Downloads

Download data is not yet available.

Author Biographies

Hend M. Dawood, Alexandria University

Department of Pharmacognosy, Faculty of Pharmacy

Eman Shawky, Alexandria University

Department of Pharmacognosy, Faculty of Pharmacy

Hala M. Hammoda, Alexandria University

Department of Pharmacognosy, Faculty of Pharmacy

Aly M. Metwally, Alexandria University

Department of Pharmacognosy, Faculty of Pharmacy

Reham S. Ibrahim, Alexandria University

Department of Pharmacognosy, Faculty of Pharmacy

References

Jiang, H.; Shi, J.; Li, Y. Molecules 2011, 16, 3146-3151. DOI: https://doi.org/10.3390/molecules16043146

Balunas, M. J.; Su, B.; Brueggemeier, R. W.; Kinghorn, A. D. Anti-cancer Agents Med. Chem. 2008, 8, 646-682. DOI: https://doi.org/10.2174/1871520610808060646

Balunas, M. J.; Kinghorn, A. D. Planta Med. 2010, 76, 1087. DOI: https://doi.org/10.1055/s-0030-1250169

Ryu, J.-H.; Lee, S.-J.; Kim, M.-J.; Shin, J.-H.; Kang, S.-K.; Cho, K.-M.; Sung, N.-J. J. Korean Soc. Food Sci. Nutr. 2011, 40, 509-516. DOI: https://doi.org/10.3746/jkfn.2011.40.4.509

Al-Zubaidy, A. A. Int. J. Pharm. Sci. Rev. Res. 2014, 29, 303-306.

Kaushik, A. C.; Kumar, S.; Wei, D. Q.; Sahi, S. Front. Chem. 2018, 6. DOI: https://doi.org/10.3389/fchem.2018.00023

Kumavath, R.; Azad, M.; Devarapalli, P.; Tiwari, S.; Kar, S.; Barh, D.; Azevedo, V.; Kumar, A. P. Bioinformation. 2016, 12, 324-331. DOI: https://doi.org/10.6026/97320630012324

Tripathi, S. K.; Selvaraj, C.; Singh, S. K.; Reddy, K. K. Med. Chem. Res. 2012, 21, 4239-4251. DOI: https://doi.org/10.1007/s00044-011-9940-6

Hend M. Dawood, R. S. I., Eman Shawky a, Hala M. Hammoda, Aly M. Metwally, Development of a validated HPTLC-bioautographic method for evaluation of aromatase inhibitory activity of plant extracts and their constituents: comparative quantitation using peak area and reciprocal iso-inhibition volume methods.

(a) Semenya, S.; Maroyi, A.; Potgieter, M.; Erasmus, L. Afr. J. Tradit., Complementary Altern. Med. 2013, 10, 331-339; (b) Raja, R. R. Afr. J. Plant Sci. 2015, 9, 320-326.

Stresser, D. M., High-Throughput Screening of Human Cytochrome P450 Inhibitors Using Fluorometric Substrates: Methodology for 25 Enzyme/Substrate Pairs, Humana Press?, 2004, 215-230. DOI: https://doi.org/10.1385/1-59259-800-5:215

Bisswanger, H. Perspect. Sci. 2014, 1, 41-55. DOI: https://doi.org/10.1016/j.pisc.2014.02.005

Schrödinger, L., QikProp 3.0 User Manual. 2007.

Blaskó, G.; Cordell, G. A.; Lankin, D. C. Journal Nat. Prod. 1988, 51, 1273-1276. DOI: https://doi.org/10.1021/np50060a040

Yu, S.; Fang, N.; Mabry, T. J. Phytochemistry. 1987, 26, 2131-2133. DOI: https://doi.org/10.1016/S0031-9422(00)81782-3

Brown, G. D.Molecules. 2010, 15, 7603-98. DOI: https://doi.org/10.3390/molecules15117603

Delnavazi, M.-R.; Hadjiakhoondi, A.; Delazar, A.; Ajani, Y.; Yassa, N., Azerosides A and B: Two new phloroacetophenone glycosides from the roots of Dorema glabrum Fisch. & C.A. Mey, Vol. 24, 2014. DOI: https://doi.org/10.1007/s00044-014-1138-2

Wollenweber, E.; Schober, I.; Dennis, C. W.; George, Y. Phytochemistry. 1985, 24, 2129-2131. DOI: https://doi.org/10.1016/S0031-9422(00)83141-6

Shaikh, A.; Makhmoor, T.; Choudhary, M., Radical scavenging potential of compounds isolated from Vitex agnus-castus, Vol. 34, 2010, 119.

Sarojini, K.; Krishnan, H. Rom. J. Biophy. 2014, 24.

Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. J. Med. Chem. 2004, 47, 1750-1759. DOI: https://doi.org/10.1021/jm030644s

Pirhadi, S.; Ghasemi, J. B. Mol. Inf. 2012, 31, 856-866. DOI: https://doi.org/10.1002/minf.201200018

Kalani, K.; Yadav, D. K.; Khan, F.; Srivastava, S. K.; Suri, N. J. Mol. Model. 2012, 18, 3389-3413. DOI: https://doi.org/10.1007/s00894-011-1327-6

Hosen, S. Z.; Dash, R.; Khatun, M.; Akter, R.; Bhuiyan, M. H. R.; Rezaul, M.; Karim, N. J. M.; Ahamed, F.; Islam, K. S.; Afrin, S. J. Appl. Pharm. Sci. 2017, 7, 120-128. DOI: https://doi.org/10.7324/JAPS.2017.70116

Ntie-Kang, F. SpringerPlus. 2013, 2, 353. DOI: https://doi.org/10.1186/2193-1801-2-353

Khan, M. F.; Verma, G.; Akhtar, W. Arabian J. Chem. 2016.

×

Additional Files

Published

2020-10-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 

You may also start an advanced similarity search for this article.

Loading...