Use of Chemically Modified Titanium Dioxide Particles to Mediate the Non-isothermal Cold Crystallization of Poly(latic acid)
DOI:
https://doi.org/10.29356/jmcs.v64i2.1126Keywords:
Non-isothermal Crystallization, titanium dioxide, composites, Chemical Modification, Poly(lactic acid)Abstract
In this work, the effect of the chemical modification of titanium dioxide particles on the non-isothermal crystallization process of polylactic acid (PLA) was studied. Cold crystallization in some polymers occurs above the glass transition temperature (Tg) when the polymer chains gain sufficient mobility to organize themselves into the ordered structure (i.e. the crystal structure) by folding the chains. Cold crystallization in general is caused by the ordering of the molecular chains in the crystalline PLA due to the increased mobility during heating. Through an analysis of the cool crystallization process in DSC at different cooling rates, it was observed that the behavior of PLA and its composites made with titanium dioxide, neat and functionalized with dicarboxylic acids, can be described through the models used for crystallization of the polymer carrying out during cooling, such as Mo’s and Jeziorny’s model. In addition, it was determined that the chemical modification of TiO2 performed with silane increases the crystallization rate in the last step of the process; while the chemical modification with dicarboxylic acid has an accelerated effect on the crystal formation process attributed to the affinity between the aliphatic part of this group and the polymer chains. Also, it was shown that the inclusion of the silanized particles has no effect on the energy requirement compared to the pure PLA process; however, the addition of particles with the dicarboxylic acid decreases the energy value required to complete the crystalline state due to affinity at the surface to immobilize the polymer chains. Finally, it is emphasized that the activation energy required to perform the crystallization of PLA and its composites has positive values, which is an indicator that the crystallization was performed while heating, after reaching and passing the glass transition temperature and before melting.
Downloads
References
Sánchez MS, Gómez Ribelles JL, Hernández Sánchez F, Mano JF. Thermochim Acta. 2005; 430, 201-210. DOI:10.1016/j.tca.2005.01.066. DOI: https://doi.org/10.1016/j.tca.2005.01.066
Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Polym Degrad Stab. 2010; 95,116-125. DOI:10.1016/J.POLYMDEGRADSTAB.2009.11.045. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.045
Kodal M, Wis AA, Ozkoc G. Radiat Phys Chem. 2018; 153, 214-225. DOI:10.1016/j.radphyschem.2018.10.018 DOI: https://doi.org/10.1016/j.radphyschem.2018.10.018
Camargo PHC, Satyanarayana KG, Wypych F. Mater Res. 2009; 12,1-39. DOI:10.1590/S1516-14392009000100002. DOI: https://doi.org/10.1590/S1516-14392009000100002
Lunt J. Polym Degrad and Stabil. 1998; 97,145-152. DOI: https://doi.org/10.1016/S0141-3910(97)00148-1
Tadakazu M, Toru M. Polymer (Guildf). 1998; 39, 5515-5521. DOI: https://doi.org/10.1016/S0032-3861(97)10203-8
Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Polymer (Guildf). 2006; 47, 7554-7563. DOI:10.1016/j.polymer.2006.08.054. DOI: https://doi.org/10.1016/j.polymer.2006.08.054
Stolt M, Södergård A, Prog. Polym. Sci. 2002; 27, DOI: 10.1016/S0079-6700(02)00012-6. DOI: https://doi.org/10.1016/S0079-6700(02)00012-6
Pillin I, Montrelay N, Bourmaud A, Grohens Y. Polym Degrad and Stabil. 2008; 93, DOI:10.1016/j.polymdegradstab.2007.12.005. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.12.005
Kaya D, McNally T, Douglas P, Coburn N, Gupta J. Adv Ind Eng Polym Res. 2018; 1, 99-110. DOI:10.1016/j.aiepr.2018.06.001. DOI: https://doi.org/10.1016/j.aiepr.2018.06.001
Iannace S, Maffezzoli A, Leo G, Nicolais L. Polymer (Guildf). 2001; 42, 3799-3807. DOI:10.1016/S0032-3861(00)00744-8. DOI: https://doi.org/10.1016/S0032-3861(00)00744-8
Tsuji H, Ikada Y. Polymer. 1995; 36, 2709-2716. doi:10.1016/0032-3861(95)93647-5. DOI: https://doi.org/10.1016/0032-3861(95)93647-5
Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Polym Int. 2004; 53, 176-183. DOI:10.1002/pi.1307 DOI: https://doi.org/10.1002/pi.1307
Wang J, Dou Q. J Macromol Sci Part B Phys. 2007; 46, 987-1001. DOI:10.1080/00222340701457311 DOI: https://doi.org/10.1080/00222340701457311
Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559,17-22. DOI:10.1016/J.TCA.2013.02.021
Liu T, Mo Z, Zhang H. J Appl Polym Sci. 1998; 67, 815-821. DOI:10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-W. DOI: https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.3.CO;2-X
Jeziorny A. Polymer (Guildf). 1978; 19, 1142-1144. DOI:10.1016/0032-3861(78)90060-5 DOI: https://doi.org/10.1016/0032-3861(78)90060-5
Lim LT, Auras R, Rubino M. Prog Polym Sci. 2008; 33, 820-852. DOI:10.1016/j.progpolymsci.2008.05.004. DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004
Kong W, Zhu B, Su F, et al. Polymer (Guildf). 2019; 168, 77-85. DOI:10.1016/J.POLYMER.2019.02.019. DOI: https://doi.org/10.1016/j.polymer.2019.02.019
Lizundia E, Petisco S, Sarasua JR. J Mech Behav Biomed Mater. 2013; 17, 242-251. DOI:10.1016/j.jmbbm.2012.09.006. DOI: https://doi.org/10.1016/j.jmbbm.2012.09.006
Ple?a I, No?ingher P V., Schlögl S, Sumereder C, Muhr M. Polymers (Basel). 2016; 8. DOI:10.3390/polym8050173. DOI: https://doi.org/10.3390/polym8050173
Keith Nelson J. IEEE; 2007, 229-235. DOI:10.1109/EEIC.2007.4562626 DOI: https://doi.org/10.1109/EEIC.2007.4562626
Z. Han RG. Nano Science and Technology Institute. 2008.
Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des. 2012;37:537-542. DOI:10.1016/J.MATDES.2012.01.038. DOI: https://doi.org/10.1016/j.matdes.2012.01.038
Esthappan SK, Kuttappan SK, Joseph R. Polym Degrad Stab. 2012; 97, 615-620. DOI:10.1016/J.POLYMDEGRADSTAB.2012.01.006. DOI: https://doi.org/10.1016/j.polymdegradstab.2012.01.006
Zhou R-J, Burkhart T. J Mater Sci. 2011; 46, 1228-1238. DOI:10.1007/s10853-010-4901-x DOI: https://doi.org/10.1007/s10853-010-4901-x
Forhad Mina M, Seema S, Matin R, et al. Polym Degrad Stab. 2009; 94, 183-188. DOI:10.1016/J.POLYMDEGRADSTAB.2008.11.006. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.11.006
Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559, 17-22. DOI:10.1016/J.TCA.2013.02.021. DOI: https://doi.org/10.1016/j.tca.2013.02.021
Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Polym Test. 2007; 26, 20-37. DOI:10.1016/J.POLYMERTESTING.2006.07.011. DOI: https://doi.org/10.1016/j.polymertesting.2006.07.011
Fukuyama Y, Senda M, Kawai T, et al. J Therm Anal Calorim. 2014; 117, 1397-1405. DOI:10.1007/s10973-014-3881-5. DOI: https://doi.org/10.1007/s10973-014-3881-5
Fragiadakis D, Pissis P, Bokobza L. Polymer (Guildf). 2005; 46, 6001-6008. DOI:10.1016/J.POLYMER.2005.05.080. DOI: https://doi.org/10.1016/j.polymer.2005.05.080
Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Polymer (Guildf). 2002; 43, 5483-5491. DOI:10.1016/S0032-3861(02)00403-2. DOI: https://doi.org/10.1016/S0032-3861(02)00403-2
Ishibai Y, Nishikawa T, Miyagishi S. J Dispers Sci Technol. 2006; 27, 1093-1098. DOI:10.1080/01932690600857147. DOI: https://doi.org/10.1080/01932690600857147
Li J, He W, Long L, et al. J Vinyl Addit Technol. 2018; 24, 58-67. DOI:10.1002/vnl.21525. DOI: https://doi.org/10.1002/vnl.21525
Alvarado ED, Juárez MGP, Pérez CP, Pérez E, Calderón JAG. J Mex Chem Soc. 2019; 63,154-168. DOI:10.29356/jmcs.v63i2.741. DOI: https://doi.org/10.29356/jmcs.v63i2.741
Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A. J Mater Sci. 2015; 50, 7998-8006. DOI:10.1007/s10853-015-9365-6. DOI: https://doi.org/10.1007/s10853-015-9365-6
Karger-Kocsis. J. Polypropylene Structure, Blends and Composites : Volume 3, 1995. Netherlands. Springer. DOI: https://doi.org/10.1007/978-94-011-0521-7
Askeland DR, Phule PP. Ciencia e Ingeneria de Los Materiales. 2004. Mexico. Thomson.
RSC. TiO2: Learn Chem Enhancing Learn Teach with RSC. 2018; 6.
Šupová M, Martynková GS, Barabaszová K. Sci Adv Mater. 2011; 3, 1-25. DOI:10.1166/sam.2011.1136. DOI: https://doi.org/10.1166/sam.2011.1136
Matthews FL, Rawlings RD, Rees D. Composite Materials : Engineering and Science. Chapman & Hall; 1994.
Tanaka T, Montanari GC, Mulhaupt R. IEEE Trans Dielectr Electr Insul. 2004; 11, 763-784. DOI:10.1109/TDEI.2004.1349782. DOI: https://doi.org/10.1109/TDEI.2004.1349782
Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L. Polym Compos. 2011; 32, 519-528. DOI:10.1002/pc.21068. DOI: https://doi.org/10.1002/pc.21068
Muñoz-Bonilla A, Cerrada M, Fernández-García M, eds. Cambridge: Royal Society of Chemistry; 2013. DOI:10.1039/9781782624998 DOI: https://doi.org/10.1039/9781782624998
Wang Z, Li G, Peng H, Zhang Z, Wang X. J Mater Sci. 2005; 40, 6433-6438. DOI:10.1007/s10853-005-1713-5. DOI: https://doi.org/10.1007/s10853-005-1713-5
Essawy AA, Ali AE-H, Abdel-Mottaleb MSA. J Hazard Mater. 2008; 157, 547-552. DOI:10.1016/j.jhazmat.2008.01.072. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.072
Tahiri Alaoui O, Nguyen QT, Mbareck C, Rhlalou T. Appl Catal A Gen. 2009; 358, 13-20. DOI:10.1016/J.APCATA.2009.01.032. DOI: https://doi.org/10.1016/j.apcata.2009.01.032
Zan L, Tian L, Liu Z, Peng Z. Appl Catal A Gen. 2004; 264, 237-242. DOI:10.1016/J.APCATA.2003.12.046. DOI: https://doi.org/10.1016/j.apcata.2003.12.046
Meng X, Wang H, Qian Z, et al. Polym Compos. 2009; 30, 543-549. DOI:10.1002/pc.20584. DOI: https://doi.org/10.1002/pc.20584
Primo Yúfera E. Universidad Politécnica de Valencia. Reverte. España.
Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E. Thermochim Acta. 2016; 631. DOI:10.1016/j.tca.2016.03.007. DOI: https://doi.org/10.1016/j.tca.2016.03.007
Rider A., Arnott D. Int J Adhes Adhes. 2000; 20, 209-220. DOI:10.1016/S0143-7496(99)00046-9. DOI: https://doi.org/10.1016/S0143-7496(99)00046-9
Article J. Mex. Chem. Soc. 2020, 64(2)
Regular Issue
©2020, Sociedad Química de México
ISSN-e 2594-0317
Wu HF, Dwight DW, Huff NT. Compos Sci Technol. 1997; 57, 975-983. DOI:10.1016/S0266-3538(97)00033-X. DOI: https://doi.org/10.1016/S0266-3538(97)00033-X
Taulemesse J-M, Bergeret A, Longerey M, Le Moigne N, Bénézet J-C. Ind Crops Prod. 2013; 52, 481-494. DOI:10.1016/j.indcrop.2013.11.022. DOI: https://doi.org/10.1016/j.indcrop.2013.11.022
Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Compos Part A Appl Sci Manuf. 2010; 41 806-819. DOI:10.1016/j.compositesa.2010.03.005. DOI: https://doi.org/10.1016/j.compositesa.2010.03.005
González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J, Zárraga Núñez R, Gonzalez-Calderon JA, Pérez E. J Dispers Sci Technol. 2018; 1-7. DOI:10.1080/01932691.2018.1496828. DOI: https://doi.org/10.1080/01932691.2018.1496828
López-Zamora L, Martínez-Martínez HN, González-Calderón JA. Mater Chem Phys. 2018; 217, 285-290. DOI:10.1016/j.matchemphys.2018.06.063. DOI: https://doi.org/10.1016/j.matchemphys.2018.06.063
Anastacio-López ZS, Gonzalez-Calderon JA, Saldivar-Guerrero R, et al. J Mater Sci. 2019; 54, 427-443. DOI:10.1007/s10853-018-2866-3. DOI: https://doi.org/10.1007/s10853-018-2866-3
Huang Y, Yan W, Xu Y, Huang L, Chen Y. Chem Synth Appl graphene carbon Mater. 2016; 43-52. DOI:10.1002/9783527648160.ch3. DOI: https://doi.org/10.1002/9783527648160.ch3
Yan JL, Chen GJ, Cao J, Yang W, Xie BH, Yang MB. New Carbon Mater. 2012; 27, 370-376. DOI:10.1016/S1872-5805(12)60022-5. DOI: https://doi.org/10.1016/S1872-5805(12)60022-5
Sharma RK, Sharma S. Dalt Trans. 2014; 43, 1292-1304. DOI:10.1039/c3dt51928g. DOI: https://doi.org/10.1039/C3DT51928G
Soares IL, Chimanowsky JP, Luetkmeyer L, Silva EO da, Souza D de HS, Tavares MIB. J Nanosci Nanotechnol. 2014; 15, 5723-5732. DOI:10.1166/jnn.2015.10041. DOI: https://doi.org/10.1166/jnn.2015.10041
Smith BC. CRC Press; US. 1999.
Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. Compos Part A Appl Sci Manuf. 2013; 49, 1-8. DOI:10.1016/j.compositesa.2013.01.016. DOI: https://doi.org/10.1016/j.compositesa.2013.01.016
Mitra T, Sailakshmi G, Gnanamani A, Mandal AB. Int J Polym Mater Polym Biomater. 2013; 62, 572-582. DOI:10.1080/00914037.2013.769161. DOI: https://doi.org/10.1080/00914037.2013.769161
Silverstein R. J Mol Struct. 1976; 30, 424-425. DOI:10.1016/0022-2860(76)87024-x. DOI: https://doi.org/10.1016/0022-2860(76)87024-X
Gradzik B, El Fray M, Wisniewska E. Chemik. 2011; 65:621-626. DOI: https://doi.org/10.3917/popu.1004.0621
Meroni D, Lo Presti L, Di Liberto G, et al. J Phys Chem C. 2017; 121, 430-440. DOI:10.1021/acs.jpcc.6b10720. DOI: https://doi.org/10.1021/acs.jpcc.6b10720
Liu L, Mei A, Liu T, et al. J Am Chem Soc. 2015; 137, 1790-1793. DOI:10.1021/ja5125594. DOI: https://doi.org/10.1021/ja5125594
Sodipo BK, Aziz AA. J Nanotechnol. 2014; 5, 1472-1476. DOI:10.3762/bjnano.5.160. DOI: https://doi.org/10.3762/bjnano.5.160
Majoul N, Aouida S, Bessaïs B. Appl Surf Sci. 2015; 331, 388-391. DOI:10.1016/j.apsusc.2015.01.107. DOI: https://doi.org/10.1016/j.apsusc.2015.01.107
Zhang Z, Tao Y, Yang Z, Mai K. Eur Polym J. 2008; 44, 1955-1961. DOI:10.1016/j.eurpolymj.2008.04.022. DOI: https://doi.org/10.1016/j.eurpolymj.2008.04.022
Kulkarni SA, Ogale SB, Vijayamohanan KP. J Colloid Interface Sci. 2008; 318, 372-379. DOI:10.1016/j.jcis.2007.11.012. DOI: https://doi.org/10.1016/j.jcis.2007.11.012
Benoit DN, Zhu H, Lilierose MH, et al. Anal Chem. 2012. 84, 9238?9245. DOI:10.1021/ac301980a. DOI: https://doi.org/10.1021/ac301980a
Ma W, Wang X, Zhang J. J Therm Anal Calorim. 2011; 103, 319-327. DOI:10.1007/s10973-010-0961-z. DOI: https://doi.org/10.1007/s10973-010-0961-z
Marco C, Gómez MA, Ellis G, Arribas JM. J Appl Polym Sci. 2002; 84, 1669-1679. DOI:10.1002/app.10546. DOI: https://doi.org/10.1002/app.10546
Friedman HL. J Polym Sci Part C Polym Symp. 2007; 6, 183-195. DOI:10.1002/polc.5070060121. DOI: https://doi.org/10.1002/polc.5070060121
Yang J nian, Xu Y xuan, Nie S bin, Cheng G jun, Tao Y lun, Zhu J bo. Polym Degrad Stab. 2018; 158, 176-189. DOI:10.1016/j.polymdegradstab.2018.11.008. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.11.008
Naffakh M, Marco C, Ellis G. Polymers (Basel). 2015; 7, 2175-2189. DOI:10.3390/polym7111507. DOI: https://doi.org/10.3390/polym7111507
Papageorgiou GZ, Panayiotou C. Thermochim Acta. 2011; 523, 187-199. DOI:10.1016/j.tca.2011.05.023. DOI: https://doi.org/10.1016/j.tca.2011.05.023


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
