Use of Chemically Modified Titanium Dioxide Particles to Mediate the Non-isothermal Cold Crystallization of Poly(latic acid)

Authors

  • J. A. Gonzalez-Calderon CONACYT - Instituto de Física, Universidad Autónoma de San Luis Potosí https://orcid.org/0000-0001-9290-3132
  • Guadalupe Mendoza Universidad Autónoma de San Luis Potosí
  • M. G. Peña-Juárez Universidad Autónoma de San Luis Potosí
  • Elias Perez Universidad Autónoma de San Luis Potosí

DOI:

https://doi.org/10.29356/jmcs.v64i2.1126

Keywords:

Non-isothermal Crystallization, titanium dioxide, composites, Chemical Modification, Poly(lactic acid)

Abstract

In this work, the effect of the chemical modification of titanium dioxide particles on the non-isothermal crystallization process of polylactic acid (PLA) was studied. Cold crystallization in some polymers occurs above the glass transition temperature (Tg) when the polymer chains gain sufficient mobility to organize themselves into the ordered structure (i.e. the crystal structure) by folding the chains. Cold crystallization in general is caused by the ordering of the molecular chains in the crystalline PLA due to the increased mobility during heating. Through an analysis of the cool crystallization process in DSC at different cooling rates, it was observed that the behavior of PLA and its composites made with titanium dioxide, neat and functionalized with dicarboxylic acids, can be described through the models used for crystallization of the polymer carrying out during cooling, such as Mo’s and Jeziorny’s model. In addition, it was determined that the chemical modification of TiO2 performed with silane increases the crystallization rate in the last step of the process; while the chemical modification with dicarboxylic acid has an accelerated effect on the crystal formation process attributed to the affinity between the aliphatic part of this group and the polymer chains. Also, it was shown that the inclusion of the silanized particles has no effect on the energy requirement compared to the pure PLA process; however, the addition of particles with the dicarboxylic acid decreases the energy value required to complete the crystalline state due to affinity at the surface to immobilize the polymer chains. Finally, it is emphasized that the activation energy required to perform the crystallization of PLA and its composites has positive values, which is an indicator that the crystallization was performed while heating, after reaching and passing the glass transition temperature and before melting.

Downloads

Download data is not yet available.

Author Biographies

J. A. Gonzalez-Calderon, CONACYT - Instituto de Física, Universidad Autónoma de San Luis Potosí

Researcher.

Catedra CONACYT-Universidad Autónoma de San Luis Potosí, Instituto de Física. Mexico

Guadalupe Mendoza, Universidad Autónoma de San Luis Potosí

Doctorado en Ciencias Ingeniería Química.

M. G. Peña-Juárez, Universidad Autónoma de San Luis Potosí

Doctorado en Ciencias Ingeniería Química.

Elias Perez, Universidad Autónoma de San Luis Potosí

Instituto de Física

References

Sánchez MS, Gómez Ribelles JL, Hernández Sánchez F, Mano JF. Thermochim Acta. 2005; 430, 201-210. DOI:10.1016/j.tca.2005.01.066. DOI: https://doi.org/10.1016/j.tca.2005.01.066

Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Polym Degrad Stab. 2010; 95,116-125. DOI:10.1016/J.POLYMDEGRADSTAB.2009.11.045. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.11.045

Kodal M, Wis AA, Ozkoc G. Radiat Phys Chem. 2018; 153, 214-225. DOI:10.1016/j.radphyschem.2018.10.018 DOI: https://doi.org/10.1016/j.radphyschem.2018.10.018

Camargo PHC, Satyanarayana KG, Wypych F. Mater Res. 2009; 12,1-39. DOI:10.1590/S1516-14392009000100002. DOI: https://doi.org/10.1590/S1516-14392009000100002

Lunt J. Polym Degrad and Stabil. 1998; 97,145-152. DOI: https://doi.org/10.1016/S0141-3910(97)00148-1

Tadakazu M, Toru M. Polymer (Guildf). 1998; 39, 5515-5521. DOI: https://doi.org/10.1016/S0032-3861(97)10203-8

Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Polymer (Guildf). 2006; 47, 7554-7563. DOI:10.1016/j.polymer.2006.08.054. DOI: https://doi.org/10.1016/j.polymer.2006.08.054

Stolt M, Södergård A, Prog. Polym. Sci. 2002; 27, DOI: 10.1016/S0079-6700(02)00012-6. DOI: https://doi.org/10.1016/S0079-6700(02)00012-6

Pillin I, Montrelay N, Bourmaud A, Grohens Y. Polym Degrad and Stabil. 2008; 93, DOI:10.1016/j.polymdegradstab.2007.12.005. DOI: https://doi.org/10.1016/j.polymdegradstab.2007.12.005

Kaya D, McNally T, Douglas P, Coburn N, Gupta J. Adv Ind Eng Polym Res. 2018; 1, 99-110. DOI:10.1016/j.aiepr.2018.06.001. DOI: https://doi.org/10.1016/j.aiepr.2018.06.001

Iannace S, Maffezzoli A, Leo G, Nicolais L. Polymer (Guildf). 2001; 42, 3799-3807. DOI:10.1016/S0032-3861(00)00744-8. DOI: https://doi.org/10.1016/S0032-3861(00)00744-8

Tsuji H, Ikada Y. Polymer. 1995; 36, 2709-2716. doi:10.1016/0032-3861(95)93647-5. DOI: https://doi.org/10.1016/0032-3861(95)93647-5

Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Polym Int. 2004; 53, 176-183. DOI:10.1002/pi.1307 DOI: https://doi.org/10.1002/pi.1307

Wang J, Dou Q. J Macromol Sci Part B Phys. 2007; 46, 987-1001. DOI:10.1080/00222340701457311 DOI: https://doi.org/10.1080/00222340701457311

Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559,17-22. DOI:10.1016/J.TCA.2013.02.021

Liu T, Mo Z, Zhang H. J Appl Polym Sci. 1998; 67, 815-821. DOI:10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-W. DOI: https://doi.org/10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.3.CO;2-X

Jeziorny A. Polymer (Guildf). 1978; 19, 1142-1144. DOI:10.1016/0032-3861(78)90060-5 DOI: https://doi.org/10.1016/0032-3861(78)90060-5

Lim LT, Auras R, Rubino M. Prog Polym Sci. 2008; 33, 820-852. DOI:10.1016/j.progpolymsci.2008.05.004. DOI: https://doi.org/10.1016/j.progpolymsci.2008.05.004

Kong W, Zhu B, Su F, et al. Polymer (Guildf). 2019; 168, 77-85. DOI:10.1016/J.POLYMER.2019.02.019. DOI: https://doi.org/10.1016/j.polymer.2019.02.019

Lizundia E, Petisco S, Sarasua JR. J Mech Behav Biomed Mater. 2013; 17, 242-251. DOI:10.1016/j.jmbbm.2012.09.006. DOI: https://doi.org/10.1016/j.jmbbm.2012.09.006

Ple?a I, No?ingher P V., Schlögl S, Sumereder C, Muhr M. Polymers (Basel). 2016; 8. DOI:10.3390/polym8050173. DOI: https://doi.org/10.3390/polym8050173

Keith Nelson J. IEEE; 2007, 229-235. DOI:10.1109/EEIC.2007.4562626 DOI: https://doi.org/10.1109/EEIC.2007.4562626

Z. Han RG. Nano Science and Technology Institute. 2008.

Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des. 2012;37:537-542. DOI:10.1016/J.MATDES.2012.01.038. DOI: https://doi.org/10.1016/j.matdes.2012.01.038

Esthappan SK, Kuttappan SK, Joseph R. Polym Degrad Stab. 2012; 97, 615-620. DOI:10.1016/J.POLYMDEGRADSTAB.2012.01.006. DOI: https://doi.org/10.1016/j.polymdegradstab.2012.01.006

Zhou R-J, Burkhart T. J Mater Sci. 2011; 46, 1228-1238. DOI:10.1007/s10853-010-4901-x DOI: https://doi.org/10.1007/s10853-010-4901-x

Forhad Mina M, Seema S, Matin R, et al. Polym Degrad Stab. 2009; 94, 183-188. DOI:10.1016/J.POLYMDEGRADSTAB.2008.11.006. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.11.006

Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559, 17-22. DOI:10.1016/J.TCA.2013.02.021. DOI: https://doi.org/10.1016/j.tca.2013.02.021

Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Polym Test. 2007; 26, 20-37. DOI:10.1016/J.POLYMERTESTING.2006.07.011. DOI: https://doi.org/10.1016/j.polymertesting.2006.07.011

Fukuyama Y, Senda M, Kawai T, et al. J Therm Anal Calorim. 2014; 117, 1397-1405. DOI:10.1007/s10973-014-3881-5. DOI: https://doi.org/10.1007/s10973-014-3881-5

Fragiadakis D, Pissis P, Bokobza L. Polymer (Guildf). 2005; 46, 6001-6008. DOI:10.1016/J.POLYMER.2005.05.080. DOI: https://doi.org/10.1016/j.polymer.2005.05.080

Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Polymer (Guildf). 2002; 43, 5483-5491. DOI:10.1016/S0032-3861(02)00403-2. DOI: https://doi.org/10.1016/S0032-3861(02)00403-2

Ishibai Y, Nishikawa T, Miyagishi S. J Dispers Sci Technol. 2006; 27, 1093-1098. DOI:10.1080/01932690600857147. DOI: https://doi.org/10.1080/01932690600857147

Li J, He W, Long L, et al. J Vinyl Addit Technol. 2018; 24, 58-67. DOI:10.1002/vnl.21525. DOI: https://doi.org/10.1002/vnl.21525

Alvarado ED, Juárez MGP, Pérez CP, Pérez E, Calderón JAG. J Mex Chem Soc. 2019; 63,154-168. DOI:10.29356/jmcs.v63i2.741. DOI: https://doi.org/10.29356/jmcs.v63i2.741

Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A. J Mater Sci. 2015; 50, 7998-8006. DOI:10.1007/s10853-015-9365-6. DOI: https://doi.org/10.1007/s10853-015-9365-6

Karger-Kocsis. J. Polypropylene Structure, Blends and Composites : Volume 3, 1995. Netherlands. Springer. DOI: https://doi.org/10.1007/978-94-011-0521-7

Askeland DR, Phule PP. Ciencia e Ingeneria de Los Materiales. 2004. Mexico. Thomson.

RSC. TiO2: Learn Chem Enhancing Learn Teach with RSC. 2018; 6.

Šupová M, Martynková GS, Barabaszová K. Sci Adv Mater. 2011; 3, 1-25. DOI:10.1166/sam.2011.1136. DOI: https://doi.org/10.1166/sam.2011.1136

Matthews FL, Rawlings RD, Rees D. Composite Materials : Engineering and Science. Chapman & Hall; 1994.

Tanaka T, Montanari GC, Mulhaupt R. IEEE Trans Dielectr Electr Insul. 2004; 11, 763-784. DOI:10.1109/TDEI.2004.1349782. DOI: https://doi.org/10.1109/TDEI.2004.1349782

Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L. Polym Compos. 2011; 32, 519-528. DOI:10.1002/pc.21068. DOI: https://doi.org/10.1002/pc.21068

Muñoz-Bonilla A, Cerrada M, Fernández-García M, eds. Cambridge: Royal Society of Chemistry; 2013. DOI:10.1039/9781782624998 DOI: https://doi.org/10.1039/9781782624998

Wang Z, Li G, Peng H, Zhang Z, Wang X. J Mater Sci. 2005; 40, 6433-6438. DOI:10.1007/s10853-005-1713-5. DOI: https://doi.org/10.1007/s10853-005-1713-5

Essawy AA, Ali AE-H, Abdel-Mottaleb MSA. J Hazard Mater. 2008; 157, 547-552. DOI:10.1016/j.jhazmat.2008.01.072. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.072

Tahiri Alaoui O, Nguyen QT, Mbareck C, Rhlalou T. Appl Catal A Gen. 2009; 358, 13-20. DOI:10.1016/J.APCATA.2009.01.032. DOI: https://doi.org/10.1016/j.apcata.2009.01.032

Zan L, Tian L, Liu Z, Peng Z. Appl Catal A Gen. 2004; 264, 237-242. DOI:10.1016/J.APCATA.2003.12.046. DOI: https://doi.org/10.1016/j.apcata.2003.12.046

Meng X, Wang H, Qian Z, et al. Polym Compos. 2009; 30, 543-549. DOI:10.1002/pc.20584. DOI: https://doi.org/10.1002/pc.20584

Primo Yúfera E. Universidad Politécnica de Valencia. Reverte. España.

Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E. Thermochim Acta. 2016; 631. DOI:10.1016/j.tca.2016.03.007. DOI: https://doi.org/10.1016/j.tca.2016.03.007

Rider A., Arnott D. Int J Adhes Adhes. 2000; 20, 209-220. DOI:10.1016/S0143-7496(99)00046-9. DOI: https://doi.org/10.1016/S0143-7496(99)00046-9

Article J. Mex. Chem. Soc. 2020, 64(2)

Regular Issue

©2020, Sociedad Química de México

ISSN-e 2594-0317

Wu HF, Dwight DW, Huff NT. Compos Sci Technol. 1997; 57, 975-983. DOI:10.1016/S0266-3538(97)00033-X. DOI: https://doi.org/10.1016/S0266-3538(97)00033-X

Taulemesse J-M, Bergeret A, Longerey M, Le Moigne N, Bénézet J-C. Ind Crops Prod. 2013; 52, 481-494. DOI:10.1016/j.indcrop.2013.11.022. DOI: https://doi.org/10.1016/j.indcrop.2013.11.022

Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Compos Part A Appl Sci Manuf. 2010; 41 806-819. DOI:10.1016/j.compositesa.2010.03.005. DOI: https://doi.org/10.1016/j.compositesa.2010.03.005

González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J, Zárraga Núñez R, Gonzalez-Calderon JA, Pérez E. J Dispers Sci Technol. 2018; 1-7. DOI:10.1080/01932691.2018.1496828. DOI: https://doi.org/10.1080/01932691.2018.1496828

López-Zamora L, Martínez-Martínez HN, González-Calderón JA. Mater Chem Phys. 2018; 217, 285-290. DOI:10.1016/j.matchemphys.2018.06.063. DOI: https://doi.org/10.1016/j.matchemphys.2018.06.063

Anastacio-López ZS, Gonzalez-Calderon JA, Saldivar-Guerrero R, et al. J Mater Sci. 2019; 54, 427-443. DOI:10.1007/s10853-018-2866-3. DOI: https://doi.org/10.1007/s10853-018-2866-3

Huang Y, Yan W, Xu Y, Huang L, Chen Y. Chem Synth Appl graphene carbon Mater. 2016; 43-52. DOI:10.1002/9783527648160.ch3. DOI: https://doi.org/10.1002/9783527648160.ch3

Yan JL, Chen GJ, Cao J, Yang W, Xie BH, Yang MB. New Carbon Mater. 2012; 27, 370-376. DOI:10.1016/S1872-5805(12)60022-5. DOI: https://doi.org/10.1016/S1872-5805(12)60022-5

Sharma RK, Sharma S. Dalt Trans. 2014; 43, 1292-1304. DOI:10.1039/c3dt51928g. DOI: https://doi.org/10.1039/C3DT51928G

Soares IL, Chimanowsky JP, Luetkmeyer L, Silva EO da, Souza D de HS, Tavares MIB. J Nanosci Nanotechnol. 2014; 15, 5723-5732. DOI:10.1166/jnn.2015.10041. DOI: https://doi.org/10.1166/jnn.2015.10041

Smith BC. CRC Press; US. 1999.

Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. Compos Part A Appl Sci Manuf. 2013; 49, 1-8. DOI:10.1016/j.compositesa.2013.01.016. DOI: https://doi.org/10.1016/j.compositesa.2013.01.016

Mitra T, Sailakshmi G, Gnanamani A, Mandal AB. Int J Polym Mater Polym Biomater. 2013; 62, 572-582. DOI:10.1080/00914037.2013.769161. DOI: https://doi.org/10.1080/00914037.2013.769161

Silverstein R. J Mol Struct. 1976; 30, 424-425. DOI:10.1016/0022-2860(76)87024-x. DOI: https://doi.org/10.1016/0022-2860(76)87024-X

Gradzik B, El Fray M, Wisniewska E. Chemik. 2011; 65:621-626. DOI: https://doi.org/10.3917/popu.1004.0621

Meroni D, Lo Presti L, Di Liberto G, et al. J Phys Chem C. 2017; 121, 430-440. DOI:10.1021/acs.jpcc.6b10720. DOI: https://doi.org/10.1021/acs.jpcc.6b10720

Liu L, Mei A, Liu T, et al. J Am Chem Soc. 2015; 137, 1790-1793. DOI:10.1021/ja5125594. DOI: https://doi.org/10.1021/ja5125594

Sodipo BK, Aziz AA. J Nanotechnol. 2014; 5, 1472-1476. DOI:10.3762/bjnano.5.160. DOI: https://doi.org/10.3762/bjnano.5.160

Majoul N, Aouida S, Bessaïs B. Appl Surf Sci. 2015; 331, 388-391. DOI:10.1016/j.apsusc.2015.01.107. DOI: https://doi.org/10.1016/j.apsusc.2015.01.107

Zhang Z, Tao Y, Yang Z, Mai K. Eur Polym J. 2008; 44, 1955-1961. DOI:10.1016/j.eurpolymj.2008.04.022. DOI: https://doi.org/10.1016/j.eurpolymj.2008.04.022

Kulkarni SA, Ogale SB, Vijayamohanan KP. J Colloid Interface Sci. 2008; 318, 372-379. DOI:10.1016/j.jcis.2007.11.012. DOI: https://doi.org/10.1016/j.jcis.2007.11.012

Benoit DN, Zhu H, Lilierose MH, et al. Anal Chem. 2012. 84, 9238?9245. DOI:10.1021/ac301980a. DOI: https://doi.org/10.1021/ac301980a

Ma W, Wang X, Zhang J. J Therm Anal Calorim. 2011; 103, 319-327. DOI:10.1007/s10973-010-0961-z. DOI: https://doi.org/10.1007/s10973-010-0961-z

Marco C, Gómez MA, Ellis G, Arribas JM. J Appl Polym Sci. 2002; 84, 1669-1679. DOI:10.1002/app.10546. DOI: https://doi.org/10.1002/app.10546

Friedman HL. J Polym Sci Part C Polym Symp. 2007; 6, 183-195. DOI:10.1002/polc.5070060121. DOI: https://doi.org/10.1002/polc.5070060121

Yang J nian, Xu Y xuan, Nie S bin, Cheng G jun, Tao Y lun, Zhu J bo. Polym Degrad Stab. 2018; 158, 176-189. DOI:10.1016/j.polymdegradstab.2018.11.008. DOI: https://doi.org/10.1016/j.polymdegradstab.2018.11.008

Naffakh M, Marco C, Ellis G. Polymers (Basel). 2015; 7, 2175-2189. DOI:10.3390/polym7111507. DOI: https://doi.org/10.3390/polym7111507

Papageorgiou GZ, Panayiotou C. Thermochim Acta. 2011; 523, 187-199. DOI:10.1016/j.tca.2011.05.023. DOI: https://doi.org/10.1016/j.tca.2011.05.023

×

Published

2020-04-04

Issue

Section

Regular Articles
x

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...