Reactions of Vinylcyclopropane and Bicyclopropyl Compounds With Maleic Anhydride


  • C. K. Jankowski Université de Moncton
  • A. Pelletier Université de Moncton
  • Eduardo Díaz Universidad Nacional Autónoma de México
  • Jacqueline M. R. Belanger CTE
  • J.R. J. Paré CTE
  • C. Lamouroux Université de Moncton
  • J. Boivin CNRS



Microwave, Thermal Diels-Alder Reactions, Diene Precursors, Vinylcyclopropane as a Diene


Vinylcyclopropane and bicyclopropyl C6 compounds are studied as diene precursors in the Diels-Alder reaction. Their rearrangement under different thermal and microwave conditions leads to specific isomeric hexa-, penta- or butadienes, condensed with maleic anhydride as a dienophile. Adduct stereochemistries were compared to those of previously-synthesized model compounds, and are fully characterized with 2D NMR and GC-MS spectroscopies. Some unsaturated terpenes bearing vinylcyclopropane moieties were also condensed, and their adduct structures assigned.


Download data is not yet available.

Author Biographies

C. K. Jankowski, Université de Moncton

Département de Chimie et Biochimie

A. Pelletier, Université de Moncton

Département de Chimie et Biochimie

Eduardo Díaz, Universidad Nacional Autónoma de México

Instituto de Química

Jacqueline M. R. Belanger, CTE

Division of green chemistry

J.R. J. Paré, CTE

Division of green chemistry

C. Lamouroux, Université de Moncton

Département de Chimie et Biochimie

J. Boivin, CNRS

Institut des substances naturelles


1. Alder, K.; Stein, G. Angew. Chem. 1937, 50, 510
2. Woodward, R.B.; Hoffmann, R. “Conservation of orbital symmetry”, Verlag chemie, Weiheim, (1970); Woodward, R.B.; C.K. Jankowski et al. Hoffmann, R. J. Amer. Chem. Soc. 87, (1965) 395; Woodward, R.B.; Hoffmann, R. Angew. Chem. Int. Ed. 1969, 8, 781
3. Kloetzel, M.C.; Org. Reactions, 4, (1948) 1; Holmes, H.L.; Org. Reactions, 4, (1948) 60; Butz, L.W. and Rytina, A.W.; Org. reactions, 5, (1949) 136; Martin, J.G.; Hill, R.K.; Chem. Rev. 61, (1961) 537; Diels, O.; Alder, K. Ann., 460, (1928) 98; Diels, O.; Alder, K. Ann., 470, (1929) 62; Diels, O.; Alder, K.; Ber., 62, (1929) 2081; Diels, O., Alder, K.; Ber., 62, (1929) 2087; Littmann, E.R. Ind. Eng. Chem., 28, (1936) 11509
4. Corno, C.; Ferraris, G.; Priola, A.; Cesca, S. Macromolecules 1979, 12, 404
5. Cesca, S. “Isomerisation Polymerisation” Encyclopedia of Polymer Science and Engineering, Vol. 2, J,Wiley, New York, 1985
6. Jankowski, C.K.; Dako, E.; Boulaouz, A.; Delaforge, M.; Paré, J.J.R.; Bélanger, J.M.R. Spectroscopy 2007, 12, 293
7. Snyder, L.C.; Meiboom, S. J. Amer. Chem. Soc. 1967, 89, 1038; Pelletier, A.; M.Sc, Thesis, Université de Moncton, 2008
8. Charton, M. and Zabicky, J.; “The chemistry of alkenes” Interscience, NewYork, 2, (1970) 511; Staley, S.W.; J. Amer. Chem. Soc. 1967, 89, 1532; Pews, R.G. and Ojha, N.D.; J. Amer. Chem. Soc. 1969, 91, 5769
9. Fleming, I.; Frontier Orbitals and Organic Chemical Reactions, J.Wiley, New York, 7th ed., (1976)
10. Bartlett, P.D. Tetrahedron 1980, 36, 2; Rhoads, S.J.; and Raulins, N.R. Org. Reactions 22, (1975) 1
11. Baldwin, J. Chem. Rev. 2003, 103, 1197 and references quoted therein
12. Overton, K.H.; Specialist Periodical Report: Terpenoids and steroids, Vol. 4, 42-6; Cooper, M.A.; Holden, C.D.; Loftus, P.; Whittaker, D. J. S. C. Perkin II, 1973, 665
13. However it is worth noticing that the sigmatropic shift was considered by Woodward-Hoffmann formalism only for a limited number of concerted reactions. The vinylcyclopropane (1) system could undergo a sigmatropic shift only after allylic rearrangement and followed by the opening of the cyclopropane ring. The allylic and/or sigmatropic shifts can then transform the vinylcyclopropane or bicyclopropyl into isomeric dienes of specific geometry. The Cope rearrangement can also be considered as a step toward the final conjugated diene formation. The vinylcyclopropane to cyclopentene rearrangement could then be seen as a 1,3-sigmatropic reaction. The accepted mechanism of this reaction proceeds via the formation of 1,5-diradicals in two isomeric configuration: Z (cis) or E (trans). The first one leads to cyclopentene and the second to dienes or other products (Scheme 4).
14. Jankowski, C.K.; Pelletier, A.; Diaz, E.T.; Bélanger, J.M.R.; Paré, J.J.R.; Aumelas, A.; Besson, T.; Pereira , F.; Mauclaire, L. Can. J. Chem. 2007, 85, 996; Jankowski, C.K.; Savoie, A.; Lesage, D.; Paré, J.J.R.; Bélanger, J.M.R.; Pereira, F.; Thierry, V.; Besson, T.; Maciejak, O.; Toma, F.; Mauclaire, L.; Lia, X. J. Mex. Chem. Soc. 2006, 50, 90.
15. Elis, R.J.; Frey, H.M. Proc. Chem. Soc. 1964, 221; Roth, W.R. and Konig, J.; Ann., 688, (1965) 28; Ohloff, G.; Tetrahedron Lett. 1965, 3795; Jorgenson, M.J.; Thacher A.F. Tetrahedron Lett. 1969, 4651; Corey, E.; Yamamoto, Y.; Herron J.T.; Achiwa, K. J. Amer. Chem. Soc. 1970, 92, 6635; Dolbier, R.; Sellers, S.F. J. Org. Chem. 1982, 47, 1
16. Hirsch, J.A. Concept in Theoretical Organic Chemistry, Allyn and Bacon, Boston, (1974) 79-83
17. The parent of these terpenes should be considered thujene (9) with a homoannular and endocyclic vinylcyclopropane which unfortunately is not commercially or easily available as a pure isomer.
18. Diels, O.; Koch, W.; Frost, H. Ber. 1938, 71, 1163
19. Goodway, N.F. and West, T.F.; Nature 1937, 934
20. Overton, K.H., Ed.; Specialist Periodical Report: Terpenoids and Steroids, Vol.4, The Chemical Society, Burlington House, London, 1974, 42-46.
21. Kasali, A.A.; Ekundayo, O.; Paul, C.; Konig, W.A.; Phytochemistry, 2002, 59, 805; Bulow, N.; Konig, W.A. Phytochemistry 2000, 55, 141
22. Katritzky, A.R.; Cai, C.; Collins, M.D.; Scriven, E.F.V.; Sing, S.K. J. Chem. Ed., 2006, 83, 634-636; Bougrin, K.; A.Loupy and M.Souiaoui, I.Photochem.Photobio.C Photochemistry Reviews, 6 (2-3) 139-67 (2005); Hoz, la; Diaz-Ortiz, A.; Moreno, A.; Critical Rev. 2005, 34, 164-178 See also the references quoted therein; Kappe, C.O.; Angew. Chem. Int. Ed. 2004, 43, 6250-6284.
23. Bélanger, J.M.R.; Alfaro, M.J.; Padilla, F.C.; Paré, J.R.J. Food Research International, 2003, 36, 499-504; Paré, J.R.J.; Rochas, J.-F.; Jacomino, J.-M.; Sanchez, F.N.L.; Bélanger, J.M.R.; Proceedings of the International Symposium on Microwave Science and its Application to Related Fields, Takamatsu, Japan, 2004, 25-28; Paré, J.R.J.; Bélanger, J.M.R.; AMPERE Newsletter, 2006, 51, 1-4
24. Paré, J.R.J.; Bélanger, J.M.R.; Punt, M.M.; US Patent 6,061,926 (2000)
25. Reetz, M.T.; Raguse, B.; Marth, C.F.; Huegel, H.M.; Bach, T.; Fox, D.N.A. Tetrahedron 1992, 48, 5731; Shibata, T.; Tabira, H.; Kenso, S.; J. Chem. Soc. Perkin Trans. 1998, 177.
26. Several attempted synthesis described in the literature mentioned the assumed presence of these products, their short lifespan, easy polymerisation or aromatisation. Several procedures were either incomplete or irreproducible. Many particular and non commercial
reagents are used in order to obtain e.g. the bicyclopropane (29), in particular zinc-Grignard (24, 28) or photolysis reactions (27).
27. Julia, M. Bull. Soc. Chim. France 1961, 1849.
28. Khusid, A.K. J. Org. Chem. USSR, 1987, 23, 112 (English translation)
29. Farneth, W.E.; Thomsen, M.W.; J. Amer. Chem. Soc. 1983, 105, 1843-1848
30. Ferreri, C.; Ambrosone, M.; Chatgilialoglu, C. Synth. Commun. 1995, 25, 3351.
31. Landgeber, J.A.; Becker, L.W.; J. Amer. Chem. Soc. 1968, 90, 395.
32. The above mentioned difficulties are related to the six carbon or lower chains of dienes involved and to the cyclopropylcarbinols.
The other isomeric model C6 dienes were not commercially accessible . Some of them cannot be obtained from the cyclopropane compounds of this study and then are not potential diene precursors.
33. The small volume stainless steel vessel conditions are relatively close to those applied in using the MW methods.






Regular Articles

Most read articles by the same author(s)