Porous Coordination Polymers (PCPs): New Platforms for Gas Storage

Authors

  • Mayra Sánchez-Serratos Universidad Nacional Autónoma de México
  • José Raziel Álvarez Universidad Nacional Autónoma de México
  • Eduardo González-Zamora Universidad Autónoma Metropolitana- Iztapalapa
  • Ilich A. Ibarra Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v60i2.72

Keywords:

porous coordination polymers (PCPs), coordination chemistry, metal ions, ligands, dimensionality, porosity, gas storage

Abstract

This review article presents the fundamental and practical aspects of porous coordination polymers (PCPs). A comprehensive description of PCPs, a crucial issue in order to identify the applications in which PCPs are promising candidates, is discussed here. By considering a non-exhaustive yet representative set of PCPs, the structural description, dimensionality, synthesis and characterisation of these materials is presented. Particularly, gas storage in PCPs is highlighted among many applications for these frameworks structures.

Downloads

Download data is not yet available.

Author Biographies

Mayra Sánchez-Serratos, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

José Raziel Álvarez, Universidad Nacional Autónoma de México

Universidad Nacional Autónoma de México

Eduardo González-Zamora, Universidad Autónoma Metropolitana- Iztapalapa

Departamento de Química

Ilich A. Ibarra, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

References

Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm 2012, 14, 3001-3004. DOI: https://doi.org/10.1039/c2ce06488j

In 2011 more than 1000 articles reporting either coordination polymers, coordination frameworks, MOFs or ZIFs were reported. Source, Thomson ISI, Web of Science.

Shibata, Y., CAN 11:5339, J. Coll. Sci., Imp. Univ. Tokyo 1916, 37, 1-17.

Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546-1554. DOI: https://doi.org/10.1021/ja00160a038

Robson, R.; Abrahams, B. F.; Batten, S. R.; Gable, R. W.; Hoskins, B. F.; Liu, J., in: Supramolecular Architecture, Vol. 499, Bein, T., Ed., ACS Symp. Ser, 1992, 256-273. DOI: https://doi.org/10.1021/bk-1992-0499.ch019

Abrahams, B. F.; Hoskins, B. F.; Michail, D. M.; Robson, R. Na-ture 1994, 369, 727-729. DOI: https://doi.org/10.1038/369727a0

Champness, N. R. Dalt. Trans. 2011, 40, 10311-10315. DOI: https://doi.org/10.1039/c1dt11184a

Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Angew. Chem. Int. Ed. 1997, 36, 1725-1727.

Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276-279. DOI: https://doi.org/10.1038/46248

Ribas, J. Coordination Chemistry. Wiley-VCH, Weinheim, 2008.

J.C. Bailar Jr. Prep. Inorg. React. 1964, 1, 1.

Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127-2157. DOI: https://doi.org/10.1016/j.ccr.2006.02.013

Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. DOI: https://doi.org/10.1002/anie.200300610

Janiak, C. Dalt. Trans. 2003, 2781-2804. DOI: https://doi.org/10.1039/b305705b

Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Poly-mers. RSC Publishing, Cambridge, 2009.

Hong, M.-C.; Chen, L. Desing and Construction of Coordination Polymers. John Wiley & Sons , New Jersey, 2009. DOI: https://doi.org/10.1002/9780470467336

Champness, N. R.; Schröder, M. Curr. Opin. Solid State Mater. Sci. 1998, 3, 419-424. DOI: https://doi.org/10.1016/S1359-0286(98)80055-7

Cheetham, A. K.; Férey, G.; Loiseau, T. Angew. Chem. Int. Ed. 1999, 38, 3268-3292. DOI: https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.3.CO;2-L

Davis, M. E. Nature 2002, 417, 813-821. DOI: https://doi.org/10.1038/nature00785

James, S. L. Chem. Soc. Rev. 2003, 32, 276-288. DOI: https://doi.org/10.1039/b200393g

Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schröder, M. Acc. Chem. Res. 2005, 38, 335-348. DOI: https://doi.org/10.1021/ar040174b

Panella, B.; Hirscher, M. Adv. Mater. 2005, 17, 538-541. DOI: https://doi.org/10.1002/adma.200400946

Hill, R. J.; Long, D. L.; Hubberstey, P.; Schröder, M.; Champness, N. R. J. Solid State Chem. 2005, 178, 2414-2419. DOI: https://doi.org/10.1016/j.jssc.2005.05.008

Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313-323. DOI: https://doi.org/10.1021/ar0401799

Natarajan, S.; Mandal, S. Angew. Chem. Int. Ed. 2008, 47, 4798-4828. DOI: https://doi.org/10.1002/anie.200701404

Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450-1459. DOI: https://doi.org/10.1039/b807080f

Morris, R. E.; Wheatley, P. S. Angew. Chem. Int. Ed. 2008, 47, 4966-4981. DOI: https://doi.org/10.1002/anie.200703934

Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev 2009, 38, 1477-1504. DOI: https://doi.org/10.1039/b802426j

Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Chem. Com-mun. 2008, 4192-4194. DOI: https://doi.org/10.1039/b718371b

Alvaro, M.; Carbonell, E.; Ferrer, B.; Xamena, F.; Garcia, H. Chem. Eur. J. 2007, 13, 5106-5112. DOI: https://doi.org/10.1002/chem.200601003

Ren, P.; Liu, M. L.; Zhang, J.; Shi, W.; Cheng, P.; Liao, D. Z.; Yan, S. P. Dalt. Trans. 2008, 4711-4713. DOI: https://doi.org/10.1039/b806964f

Zhong, R. Q.; Zou, R. Q.; Du, M.; Jiang, L.; Yamada, T.; Maruta, G.; Takeda, S.; Xu, Q. Crystengcomm 2008, 10, 605-613. DOI: https://doi.org/10.1039/b714491a

Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36, 770-818. DOI: https://doi.org/10.1039/b501600m

Zhang, L.; Qin, Y. Y.; Li, Z. J.; Lin, Q. P.; Cheng, J. K.; Zhang, J.; Yao, Y. G. Inorg. Chem. 2008, 47, 8286-8293. DOI: https://doi.org/10.1021/ic800871r

Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V; Schröder, M. Coord. Chem. Rev. 2001, 222, 155-192. DOI: https://doi.org/10.1016/S0010-8545(01)00370-8

Lehn, J.-M. Supramolecular Chemistry: Concepts and Perpec-tives. 1995. DOI: https://doi.org/10.1002/3527607439

J.Cragg, P. A Practical Guide to Supramolecular Chemistry. Wi-ley, 2005. DOI: https://doi.org/10.1002/047086656X

Whitesides, G. M.; Grzybowski, B. Science (80-. ). 2002, 295, 2418-2421. DOI: https://doi.org/10.1126/science.1070821

Zaworotko, M. J. Chem. Commun. 2001, 1-9.

Munakata, M.; Wu, L. P.; Kuroda-Sowa, T., in: Advances in Inor-ganic Chemistry, Vol. 46, Eldik, R.; Olabe, J. A., Ed., Academic Press Inc, San Diego, 1999, 173-303.doe DOI: https://doi.org/10.1016/S0898-8838(08)60151-8

Janiak, C.; Vieth, J. New J. Chem. 2010, 34, 2366-2388. DOI: https://doi.org/10.1039/c0nj00275e

Seo, J.; Sakamoto, H.; Matsuda, R.; Kitagawa, S. J. Nanosci. Nan-otechnol. 2010, 10, 3-20. DOI: https://doi.org/10.1166/jnn.2010.1494

Barnett, S. A.; Champness, N. R. Coord. Chem. Rev. 2003, 246, DOI: https://doi.org/10.1016/S0010-8545(03)00121-8

- 168.

Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Withers-by, M. A.; Schröder, M. Coord. Chem. Rev. 1999, 183, 117-138. DOI: https://doi.org/10.1016/S0010-8545(98)00173-8

Lu, J.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T. Y.; Jacobson, A. J. Inorg. Chem. 1997, 36, 923-929. DOI: https://doi.org/10.1021/ic961158g

Kitagawa, S.; Kondo, M. Bull. Chem. Soc. Jpn. 1998, 71, 1739-1753. DOI: https://doi.org/10.1246/bcsj.71.1739

Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629-1658. DOI: https://doi.org/10.1021/cr9900432

Kitagawa S.; S., N. Compreh. Coord. Chem. 2004, 7, 231.

Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319-330. DOI: https://doi.org/10.1021/ar000034b

Burrows, A. D.; Harrington, R. W.; Mahon, M. F.; Price, C. E. J. Chem. Soc. Trans. 2000, 3845-3854. DOI: https://doi.org/10.1039/b003210g

Choi, H. J.; Lee, T. S.; Suh, M. P. J. Incl. Phenom. Macrocycl. Chem. 2001, 41, 155-162. DOI: https://doi.org/10.1023/A:1014436406651

Gutschke, S. O. H.; Price, D. J.; Powell, A. K.; Wood, P. T. Angew Angew. Chem. Int. Ed. 2001, 40, 1920-1923. DOI: https://doi.org/10.1002/1521-3773(20010518)40:10<1920::AID-ANIE1920>3.0.CO;2-2

Prior, T. J.; Rosseinsky, M. J. Chem. Commun. 2001, 495-496. DOI: https://doi.org/10.1039/b009455m

Yaghi, O. M.; Li, H. L.; Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096-9101. DOI: https://doi.org/10.1021/ja960746q

Murugavel, R.; Krishnamurthy, D.; Sathiyendiran, M. J. Chem. Soc. Trans. 2002, 34-39.

Kumagai, H.; Kepert, C. J.; Kurmoo, M. Inorg. Chem. 2002, 41, 3410-3422. DOI: https://doi.org/10.1021/ic020065y

Lin, X.; Jia, J. H.; Zhao, X. B.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schröder, M. Angew. Chem. Int. Ed. 2006, 45, 7358-7364. DOI: https://doi.org/10.1002/anie.200601991

Yang, S.; Lin, X.; Blake, A. J.; Thomas, K. M.; Hubberstey, P.; Champness, N. R.; Schröder, M. Chem. Commun. 2008, 6108-6110. DOI: https://doi.org/10.1039/b814155j

Endres, H.; Knieszner, A. Acta Crystallogr. Sect. C-Crystal Struct. Commun. 1984, 40, 770-772.

Chui, S. S. Y.; Siu, A.; Feng, X.; Zhang, Z. Y.; Mak, T. C. W.; Williams, I. D. Inorg. Chem. Commun. 2001, 4, 467-470. DOI: https://doi.org/10.1016/S1387-7003(01)00183-6

Yan, Y.; Lin, X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schröder, M. Chem Commun 2009, 1025-1027. DOI: https://doi.org/10.1039/b900013e

Yan, Y.; Telepeni, I.; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A. J.; Lewis, W.; Walker, G. S.; Allan, D. R.; Barnett, S. A.; Champness, N. R.; Schröder, M. J. Am. Chem. Soc. 2010, 132, 4092-4094. DOI: https://doi.org/10.1021/ja1001407

Tong, M. L.; Chen, H. J.; Chen, X. M. Inorg. Chem. 2000, 39, 2235-2238.

Carlucci, L.; Ciani, G.; Proserpio, D. M. Chem. Commun. 1999,

- 450.

Withersby, M. A.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Schröder, M. Angew. Chem. Int. Ed. 1997, 36, 2327-2329. DOI: https://doi.org/10.1002/anie.199723271

Gamez, P.; de Hoog, P.; Roubeau, O.; Lutz, M.; Driessen, W. L.; Spek, A. L.; Reedijk, J. Chem. Commun. 2002, 1488-1489.

Biradha, K.; Seward, C.; Zaworotko, M. J. Angew. Chem. Int. Ed. 1999, 38, 492-495. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<492::AID-ANIE492>3.3.CO;2-R

Holman, K. T.; Hammud, H. H.; Isber, S.; Tabbal, M. Polyhedron 2005, 24, 221-228. DOI: https://doi.org/10.1016/j.poly.2004.11.017

Horikoshi, R.; Mikuriya, M. Cryst. Growth Des. 2005, 5, 223-230. DOI: https://doi.org/10.1021/cg049909+

Cheng, J. Y.; Dong, Y. B.; Huang, R. Q.; Smith, M. D. Inorganica Chim. Acta 2005, 358, 891-902. DOI: https://doi.org/10.1016/j.ica.2004.10.034

Kawata, S.; Kitagawa, S.; Kumagai, H.; Ishiyama, T.; Honda, K.; Tobita, H.; Adachi, K.; Katada, M. Chem. Mater. 1998, 10, 3902-3912. DOI: https://doi.org/10.1021/cm980326v

Kawata, S.; Kitagawa, S.; Kumagai, H.; Kudo, C.; Kamesaki, H.; Ishiyama, T.; Suzuki, R.; Kondo, M.; Katada, M. Inorg. Chem. 1996, 35, 4449-4461. DOI: https://doi.org/10.1021/ic9603520

Abrahams, B. F.; Lu, K. D.; Moubaraki, B.; Murray, K. S.; Rob-son, R. J. Chem. Soc. Trans. 2000, 11, 1793-1797. DOI: https://doi.org/10.1039/b000192i

Mathoniere, C.; Carling, S. G.; Dou, Y. S.; Day, P. J. Chem. Soc. Commun. 1994, 1551-1552. DOI: https://doi.org/10.1039/C39940001551

Mathoniere, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201-1206. DOI: https://doi.org/10.1021/ic950703v

Uemura, K.; Kitagawa, S.; Kondo, M.; Fukui, K.; Kitaura, R.; Chang, H. C.; Mizutani, T. Chem. Eur. J. 2002, 8, 3586-3600. DOI: https://doi.org/10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K

Spichal, Z.; Necas, M.; Pinkas, J. Inorg. Chem. 2005, 44, 2074-2080. DOI: https://doi.org/10.1021/ic048826f

Breck, D. W.; Eversole, W. G.; Milton, R. M. J. Am. Chem. Soc. 1956, 78, 2338-2339. DOI: https://doi.org/10.1021/ja01591a082

Du, X. M.; Li, J.; Wu, E. D. Prog. Chem. 2010, 22, 248-254. DOI: https://doi.org/10.1097/GCO.0b013e3283373be9

Corma, A. Chem. Rev. 1995, 95, 559-614. DOI: https://doi.org/10.1021/cr00035a006

Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504-1518. DOI: https://doi.org/10.1021/ja045123o

Rosi, N. L.; Eddaoudi, M.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Angew. Chem. Int. Ed. 2002, 41, 284-287. DOI: https://doi.org/10.1002/1521-3773(20020118)41:2<284::AID-ANIE284>3.0.CO;2-M

Chen, Q. Y.; Li, Y.; Zheng, F. K.; Zou, W. Q.; Wu, M. F.; Guo, G. C.; Wu, A. Q.; Huang, J. S. Inorg. Chem. Commun. 2008, 11, 969-971. DOI: https://doi.org/10.1016/j.inoche.2008.05.009

Chen, Z. F.; Xiong, R. G.; Abrahams, B. F.; You, X. Z.; Che, C. M. J. Chem. Soc. Trans. 2001, 2453-2455. DOI: https://doi.org/10.1039/b105130j

Collins, D. J.; Ma, S.; Zhou, H.-C. Metal Organic Frameworks esign and Application. Wiley-VCH, New Jersey, 2009.

Ma, S.; Collier, C. D.; Zhou, H.-C. Design and Construction of Metal-Organic Frameworks for Hydrogen Storage and Selective Gas Adsoprtion. New Jersey, 2009. DOI: https://doi.org/10.1002/9780470467336.ch12

Clegg, W. Compr. Coord. Chem. 2003, 1, 579-583. DOI: https://doi.org/10.1016/B0-08-043748-6/01114-2

Demazeau, G. High Press. Res. 2007, 27, 173-177. DOI: https://doi.org/10.1080/08957950601105002

Mukhopadhyay, S.; Lasri, J.; Charmier, M. A. J.; da Silva, M.; Pombeiro, A. J. L. Dalt. Trans. 2007, 5297-5304. DOI: https://doi.org/10.1039/b709959b

Barbour, L. J. Chem. Commun. 2006, 1163-1168. DOI: https://doi.org/10.1039/b515612m

Soegiarto, A. C.; Ward, M. D. Cryst. Growth Des. 2009, 9, 3803-3815. DOI: https://doi.org/10.1021/cg900578u

Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221-2295. DOI: https://doi.org/10.1021/ja02268a002

Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319. DOI: https://doi.org/10.1021/ja01269a023

IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1, Colloid and Surface Chemistry. 1972.

Takamizawa, S. Making Crystals by Design: Nanoporosity, Gas Storage, Gas Sensing . Wiley-VCH, 2007. DOI: https://doi.org/10.1002/9783527610112.ch12

Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723-1732. DOI: https://doi.org/10.1021/ja01864a025

Greeg, S. J.; Sing, K. S. W. Adsorption, Surface Area, and Poro-sity. Academic Press, London, 1984.

Sing, K. S. W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pie-rotti, R.A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603-619. DOI: https://doi.org/10.1351/pac198557040603

Dinc?, M.; Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R. Angew. Chem. Int. Ed. 2007, 46, 1419-1422. DOI: https://doi.org/10.1002/anie.200604362

Ma, S. Q.; Zhou, H. C. Chem. Commun. 2010, 46, 44-53. DOI: https://doi.org/10.1039/B916295J

Férey, G. Nature 2005, 436, 187-188. DOI: https://doi.org/10.1038/436187a

Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11623-11627. DOI: https://doi.org/10.1073/pnas.0804900105

Walker, G. Solid-State Hydrogen Storage. Woodhead Publishing in Materials, Cambridge , 2008. DOI: https://doi.org/10.1201/9781439832417

Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem. Int. Ed. 1997, 36, 1725-1727. DOI: https://doi.org/10.1002/anie.199717251

Johnson, J. Chem. Eng. News 2004, 82, 36-42. DOI: https://doi.org/10.1021/cen-v082n051.p036

Yong, Z.; Mata, V.; Rodrigues, A. E. Sep. Purif. Technol. 2002, 26, 195-205. DOI: https://doi.org/10.1016/S1383-5866(01)00165-4

Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998-17999. DOI: https://doi.org/10.1021/ja0570032

Arstad, B.; Fjellvag, H.; Kongshaug, K. O.; Swang, O.; Blom, R. Adsorpt. Int. Adsorpt. Soc. 2008, 14, 755-762. DOI: https://doi.org/10.1007/s10450-008-9137-6

Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523- 527. DOI: https://doi.org/10.1038/nature02311

Stang, P. J.; Diederich, F. Modern Acetylene Chemistry. VCH, New York, 1995. DOI: https://doi.org/10.1002/9783527615278

Chien, J. C. W. Polyacetylene: Chemistry, Physics and Material Science. Academic, New York, 1984.

Balachandra, P.; Nathan, H. S. K.; Reddy, B. S. Renew. Energy 2010, 35, 1842-1851. DOI: https://doi.org/10.1016/j.renene.2009.12.020

Budavari, S. The Merck Index , 12th edn. Merck Research Labo-ratories, New Jersey, 1996.

Radhakrishnan, R.; Gubbins, K. E.; Sliwinska-Bartkowiak, M. J. Chem. Phys. 2000, 112, 11048-11057. DOI: https://doi.org/10.1063/1.481745

Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238-241. DOI: https://doi.org/10.1038/nature03852

Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. Chem. Soc. Rev. 2010, 39, 656-675. DOI: https://doi.org/10.1039/B802882F

Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Kindo, K.; Mita, Y.; Matsuo, A.; Kobayashi, M.; Chang, H-.C.; Ozawa, T. C.; Suzuki, M.; Sakata, M.; Takata, M. Science 2005, 298, 2358-2361. DOI: https://doi.org/10.1126/science.1078481

Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. Catal. Today 2007, 120, 246-256. DOI: https://doi.org/10.1016/j.cattod.2006.09.022

Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3-14. DOI: https://doi.org/10.1016/j.micromeso.2004.03.034

Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 44, 4670-4679. DOI: https://doi.org/10.1002/anie.200462786

Collins, D. J.; Zhou, H. C. J. Mater. Chem. 2007, 17, 3154-3160. DOI: https://doi.org/10.1039/b702858j

Lin, X.; Jia, J. H.; Hubberstey, P.; Schröder, M.; Champness, N.

R. Crystengcomm 2007, 9, 438-448. DOI: https://doi.org/10.1039/B706207A

Thomas, K. M. Dalt. Trans. 2009, 1487-1505. DOI: https://doi.org/10.1039/b815583f

Zhao, D.; Yuan, D. Q.; Zhou, H. C. Energy Environ. Sci. 2008, 1, DOI: https://doi.org/10.1039/b808322n

- 235.

Thomas, K. M. Catal. Today 2007, 120, 389-398. DOI: https://doi.org/10.1016/j.cattod.2006.09.015

DOE Hydrogen, Fuel Cells & Infrastructure Technologies Pro-gram. 2007.

Zhou, W.; Wu, H.; Hartman, M. R.; Yildirim, T. J. Phys. Chem. C 2007, 111, 16131-16137. DOI: https://doi.org/10.1021/jp074889i

Panella, B.; Hirscher, M.; Putter, H.; Muller, U. Adv. Funct. Ma-ter. 2006, 16, 520-524. DOI: https://doi.org/10.1002/adfm.200500561

Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666-5667. DOI: https://doi.org/10.1021/ja049408c

Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Ed-daoudi, M.; Kim, J. Nature 2003, 423, 705-714. DOI: https://doi.org/10.1038/nature01650

Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem. Int. Ed. 2006, 45, 8227-8231. DOI: https://doi.org/10.1002/anie.200600105

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, I.; Margiolaki, I. Science 2005, 309, 2040-2042. DOI: https://doi.org/10.1126/science.1116275

Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494-3495. DOI: https://doi.org/10.1021/ja058213h

Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.; Bockrath, B. C.; Lin, W. B. Angew. Chem. Int. Ed. 2005, 44, 72-75. DOI: https://doi.org/10.1002/anie.200461214

Dinc?, M.; Long, J. R. Angew. Chem. Int. Ed. 2008, 47, 6766-6779. DOI: https://doi.org/10.1002/anie.200801163

Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688-1700. DOI: https://doi.org/10.1021/la0523816

Dinc?, M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 11172-11176. DOI: https://doi.org/10.1021/ja072871f

Dinc?, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376-9377. DOI: https://doi.org/10.1021/ja0523082

Dinc?, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876-16883. DOI: https://doi.org/10.1021/ja0656853

Peterson, V. K.; Liu, Y.; Brown, C. M.; Kepert, C. J. J. Am. Chem. Soc. 2006, 128, 15578-15579. DOI: https://doi.org/10.1021/ja0660857

Brown, C. M.; Liu, Y.; Yildirim, T.; Peterson, V. K.; Kepert, C. J. Nanotechnology 2009, 20, 204025. DOI: https://doi.org/10.1088/0957-4484/20/20/204025

Zhou, W.; Wu, H.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 15268-15269. DOI: https://doi.org/10.1021/ja807023q

Wang, X. S.; Ma, S. Q.; Forster, P. M.; Yuan, D. Q.; Eckert, J.; Lopez, J. J.; Murphy, B. J.; Parise, J. B.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47, 7263-7266. DOI: https://doi.org/10.1002/anie.200802087

Long, J.; Head-Gordon, M., in: FY 2014 Progress Report for the DOE Hydrogen and Fuel Cells Program. DOE, Washington, D. C. 2014, IV-73-IV-78.

Li, Y. W.; Yang, R. T. J. Am. Chem. Soc. 2006, 128, 8136-8137. DOI: https://doi.org/10.1021/ja061681m

Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604-9505. DOI: https://doi.org/10.1021/ja0740364

Li, Y.; Yang, R. T. J. Am. Chem. Soc. 2005, 128, 726-727. DOI: https://doi.org/10.1021/ja056831s

Somorjai, G. A. Surf. Sci. 1994, 299, 849-866. DOI: https://doi.org/10.1016/0039-6028(94)90702-1

Gee, A. T.; Hayden, B. E.; Mormiche, C.; Nunney, T. S. J. Chem. Phys. 2000, 112, 7660-7668. DOI: https://doi.org/10.1063/1.481360

Yang, R. T.; Wang, Y. J. Am. Chem. Soc. 2009, 131, 4224-4226. DOI: https://doi.org/10.1021/ja808864r

Murray, L.; Dinc?, M.; Long, J. Chem. Soc. Rev. 2012, 112, 782-835. DOI: https://doi.org/10.1021/cr200274s

Sumida, K.; Rogow, D. L.; Mason, J. a; Mcdonald, T. M.; Bloch,

E. D.; Herm, Z. R.; Bae, T.; Long, J. R. Chem. Rev. 2012, 112, 724-781 DOI: https://doi.org/10.1021/cr2003272

Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; Le-Van, M. D. Langmuir 2010, 26, 14301-14307. DOI: https://doi.org/10.1021/la102359q

Yang, S. H.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schröder, M. Chem. Eur. J. 2009, 15, 4829-4835. DOI: https://doi.org/10.1002/chem.200802292

Fracaroli, A. M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J. a.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 8863-8866. DOI: https://doi.org/10.1021/ja503296c

Cohen, S. M. Chem. Rev. 2012, 112, 970-1000. DOI: https://doi.org/10.1021/cr200179u

Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933-969. DOI: https://doi.org/10.1021/cr200304e

×

Downloads

Published

2017-10-12
x

Most read articles by the same author(s)

Similar Articles

<< < 57 58 59 60 61 62 63 64 > >> 

You may also start an advanced similarity search for this article.

Loading...