Effect of Electrolyte Concentration in Process Water on Flocculation

Authors

  • Jose Moreno-Chavez Escuela Superior Politecnica del Litoral

DOI:

https://doi.org/10.29356/jmcs.v64i1.720

Keywords:

Coagulation, Flocculation, Electrolyte solutions, Intrinsic viscosity

Abstract

Abstract. The effect of electrolyte concentration and potential determining ions on the coagulation and flocculation of illite, dolomite, and illite-dolomite mixture suspensions was investigated. Electrokinetic measurements, settling rate tests, and viscosity measurements were performed to examine the stability of these mineral suspensions and    to characterize flocculants under various physico-chemical conditions. Two flocculants: A-100 anionic polyacrylamide (PAM) and polyethylene oxide (PEO) were employed.

The tests revealed that polyethylene oxide does not flocculate dolomite under any tested conditions. Viscosity results corroborated that the conformation of PAM macro- molecules in water is very sensitive to electrolyte concentration; on the other hand, the conformational state of PEO macromolecules is not affected by ionic strength. The intrinsic viscosity measurements suggest that the unattainable flocculation of dolomite suspensions with PEO must result from poor adsorption of this flocculant onto dolomite particles.  In both tested cases, with PAM and PEO, the relationship between coagulation and flocculation was not confirmed.

               

Resumen.  Se investigó el efecto de la concentración electrolítica y iones determinantes de potencial en la coagulación y floculación de suspensiones de ilita, dolomita y mezcla de ilita-dolomita. Mediciones electrocinéticas, ensayos de velocidad de sedimentación, y mediciones de viscosidad fueron realizadas para examinar la estabilidad de estas suspensiones minerales y caracterizar floculantes bajo varias condiciones fisicoquímicas. Se empleó dos floculantes: A-100 poliacrilamida aniónica (PAM) y óxido de polietileno (PEO).

Los experimentos revelaron que el óxido de polietileno no flocula la dolomita bajo ninguna condición empleada. Los resultados de viscosidad corroboraron que la conformación de las macromoléculas PAM en agua es sensible a la concentración electrolítica; por otro lado, el estado conformacional de las macromoléculas de PEO no se ve afectado por la fuerza iónica. Las mediciones de viscosidad intrínseca sugieren que la floculación inalcanzable de las suspensiones de dolomita con PEO debe ser resultado de una mala adsorción de este floculante en las partículas de dolomita. En ambos casos probados, con PAM y PEO, no se confirmó la relación entre coagulación y floculación.

Downloads

Download data is not yet available.

References

Laskowski, J. S., in: Coal Flotation and Fine Coal Utilization, Elsevier Science B.V., 2001. DOI: https://doi.org/10.1016/S0167-4528(01)80012-0

Michaels, A. S. Ind. Engnineering Chem. Chem. 1954, 46, 1485–1490. DOI: https://doi.org/10.1021/ie50538a053. DOI: https://doi.org/10.1021/ie50535a049

Hogg, R., Polymer Adsorption and Flocculation. Polymers in Mineral Processing - Proc. of the Third UBC-McGill International Symposium on Fundamentals of Mineral Processing; Laskowski, J. S., Ed.; Metallurgical Society of CIM: Quebec City, 1999; pp 3–18.

Attia, Y. A. Flocculation. In Colloid chemistry in mineral processing; Laskowski, J. S., Ralston, J., Eds.; Elsevier Science Publishers B.V., 1992; pp 277–308. DOI: https://doi.org/10.1016/B978-0-444-88284-4.50014-7

Arinaitwe, E.; Pawlik, M. Int. J. Miner. Process. 2009, 91, 50–54. DOI: https://doi.org/10.1016/j.minpro.2008.12.002. DOI: https://doi.org/10.1016/j.minpro.2008.12.002

Mpofu, P.; Addai-mensah, J.; Ralston, J. Int. J. Miner. Process. 2003, 71, 247–268. DOI: https://doi.org/10.1016/S0301-7516(03)00062-0. DOI: https://doi.org/10.1016/S0301-7516(03)00062-0

Nasser, M. S.; James, A. E. Sep. Purif. Technol. 2006, 52, 241–252. DOI: https://doi.org/10.1016/j.seppur.2006.04.005. DOI: https://doi.org/10.1016/j.seppur.2006.04.005

Addai-Mensah, J. Powder Technol. 2007, 179, 73–78. DOI: https://doi.org/10.1016/j.powtec.2006.11.008. DOI: https://doi.org/10.1016/j.powtec.2006.11.008

Kitchener, J. A. Br. Polym. J. 1972, 4, 217–229. DOI: https://doi.org/10.1002/pi.4980040307. DOI: https://doi.org/10.1002/pi.4980040307

Hogg, R. Coal Preparation Wastewater and Fine Refuse Treatment. In Fine Coal Processing; Noyes Publications, 1987; 269–293.

Onen, V.; Gocer, M. Part. Sci. Technol. 2018, 1–8. DOI: https://doi.org/10.1080/02726351.2018.1454993. DOI: https://doi.org/10.1080/02726351.2018.1454993

Rubio, J. Colloids and Surfaces. 1981, 3, 79–95. DOI: https://doi.org/10.1016/0166-6622(81)80035-2. DOI: https://doi.org/10.1016/0166-6622(81)80035-2

Laskowski, J.; Castro, S. Int. J. Miner. Process. 2015, 144, 50–55. DOI: https://doi.org/10.1016/j.minpro.2015.09.017. DOI: https://doi.org/10.1016/j.minpro.2015.09.017

Ferrera, V.; Arinaitwe, E.; Pawlik, M. A Role of Flocculant Conformation in the Flocculation Process. In Proceedings of the 7th UBC-McGill-UA Symposium on Fundamentals of Mineral Processing; Gomez, C. O., Nesset, J. E., Rao, S. R., Eds.; Montreal, 2009; 397–408.

Friend, J. P.; Kitchener, J. A. Chem. Eng. Sci. 1973, 28, 1071–1080. DOI: https://doi.org/10.1016/0009-2509(73)80010-7. DOI: https://doi.org/10.1016/0009-2509(73)80010-7

Huang, P.; Laskowski, J. S.; Zeng, H.; Lu, Q. Use of Flocculants in High Ionic Strength Process Waters. In 9th UBC-McGill-UA Int. Symposium; 2013.

Yu, K. Lab Report: Flocculation with the Use of Polyacrylamide as a Flocculant in NaCl Solutions; Vancouver, 2015.

Arinaitwe, E. Characterization of Industrial Flocculants Through Intrinsic Viscosity Measurements, MASc Thesis. The University of British Columbia, Canada, 2008. DOI: https://doi.org/10.14288/1.0066521.

Kulicke, W.-M.; Kniewske, R.; Klein, J. Prog. Polym. Sci. 1982, 8, 373–468. DOI: https://doi.org/10.1016/0079-6700(82)90004-1

Kulicke, W.-M.; Clasen, C. Viscosimetry of Polymers and Polyelectrolytes; Springer, Berlin, Heidelberg, 2004. DOI: https://doi.org/10.1002/pi.1722. DOI: https://doi.org/10.1007/978-3-662-10796-6

Lide, D. R. CRC Handbook of Chemistry and Physics, 88th ed.; CRC Press, 2007. DOI: https://doi.org/10.4324/9781410610348. DOI: https://doi.org/10.4324/9781410610348

Fedors, R. F. Polymer (Guildf). 1979, 20, 225–228. DO: https://doi.org/10.1016/0032-3861(79)90226-X. DOI: https://doi.org/10.1016/0032-3861(79)90226-X

Moudgil, B. M.; Mathur, S.; Behl, S. Miner. Metall. Process. 1995, 24–27. DOI: https://doi.org/10.1007/BF03403074

Somasundaran, P. J. Colloid Interface Sci. 1967, 24, 433–440. DOI: https://doi.org/10.1016/0021-9797(67)90241-X. DOI: https://doi.org/10.1016/0021-9797(67)90241-X

Marouf, R.; Marouf-Khelifa, K.; Schott, J.; Khelifa, A. Microporous Mesoporous Mater. 2009, 122, 99–104. DOI: https://doi.org/10.1016/j.micromeso.2009.02.021. DOI: https://doi.org/10.1016/j.micromeso.2009.02.021

Gence, N.; Ozbay, N. Appl. Surf. Sci. 2006, 252, 8057–8061. DOI: https://doi.org/10.1016/j.apsusc.2005.10.015. DOI: https://doi.org/10.1016/j.apsusc.2005.10.015

Pokrovsky, O. S.; Schott, J.; Thomas, F. Geochim. Cosmochim. Acta. 1999, 63, 3133–3143. DOI: https://doi.org/10.1016/S0016-7037(99)00240-9. DOI: https://doi.org/10.1016/S0016-7037(99)00240-9

Liu, Y.; Liu, Q. Miner. Eng. 2004, 17, 865–878. DOI: https://doi.org/10.1016/j.mineng.2004.03.007. DOI: https://doi.org/10.1016/j.mineng.2004.03.007

Ding, K.; Laskowski, J. S. Can. Metall. Q. 2006, 45, 199–206. DOI: https://doi.org/10.1179/cmq.2006.45.2.199. DOI: https://doi.org/10.1179/cmq.2006.45.2.199

Kasha, A.; Al-Hashim, H.; Abdallah, W.; Taherian, R.; Sauerer, B. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 482, 290–299. DOI: https://doi.org/10.1016/j.colsurfa.2015.05.043. DOI: https://doi.org/10.1016/j.colsurfa.2015.05.043

Johnson, S. B.; Franks, G. V.; Scales, P. J.; Boger, D. V.; Healy, T. W. Int. J. Miner. Process. 2000, 58, 267–304. DOI: https://doi.org/10.1016/S0301-7516(99)00041-1. DOI: https://doi.org/10.1016/S0301-7516(99)00041-1

Laskowski, J. S. CIM J. 2012, 3, 203–214.

Tombácz, E.; Szekeres, M. Appl. Clay Sci. 2006, 34, 105–124. DOI: https://doi.org/10.1016/j.clay.2006.05.009. DOI: https://doi.org/10.1016/j.clay.2006.05.009

Hogg, R. Int. J. Miner. Process. 2000, 58, 223–236. DOI: https://doi.org/10.1016/S0301-7516(99)00023-X. DOI: https://doi.org/10.1016/S0301-7516(99)00023-X

Scheiner, B. J.; Wilemon, G. M. Applied Flocculation Efficiency: A Comparison of Polyethylene Oxide and Polyacrylamides. In Flocculation in Biotechnology and Separation Systems; Attia, Y. A., Ed.; Elsevier Science Publishers B.V.: Amsterdam, 1987; Vol. 4, 175–185.

Sworska, A.; Laskowski, J. S.; Cymerman, G. Int. J. Miner. Process. 2000, 60, 143–152. DOI: https://doi.org/10.1016/S0301-7516(00)00012-0. DOI: https://doi.org/10.1016/S0301-7516(00)00012-0

Rubio, J.; Kitchener, J. A. J. Colloid Interface Sci. 1976, 57, 132–142. DOI: https://doi.org/10.1016/0021-9797(76)90182-X. DOI: https://doi.org/10.1016/0021-9797(76)90182-X

Moudgil, B. M.; Chanchani, R. Trans. Am. Inst. Mining, Metall. Pet. Eng. 1985, 278 (March 1983), 13–19. DOI: https://doi.org/10.1007/BF03402589

Moudgil, B. M.; Mathur, S.; Behl, S. Miner. Metall. Process. 1995, 12, 219–224. DOI: https://doi.org/10.1007/BF03403106

Mathur, S.; Moudgil, B. Miner. Metall. Process. 1998, 15, 24–28. DOI: https://doi.org/10.1007/BF03402794

Ramirez, A.; Rojas, A.; Gutierrez, L.; Laskowski, J. S. Miner. Eng. 2018, 125 (November 2017), 10–14. DOI: https://doi.org/10.1016/j.mineng.2018.05.008. DOI: https://doi.org/10.1016/j.mineng.2018.05.008

Andreola, F.; Castellini, E.; Ferreira, J. M. F.; Olhero, S.; Romagnoli, M. Appl. Clay Sci. 2006, 31, 56–64. DOI: https://doi.org/10.1016/j.clay.2005.08.004. DOI: https://doi.org/10.1016/j.clay.2005.08.004

Pawlik, M.; Laskowski, J. S.; Ansari, A. J. Colloid Interface Sci. 2003, 260, 251–258. DOI: https://doi.org/10.1016/S0021-9797(02)00225-4. DOI: https://doi.org/10.1016/S0021-9797(02)00225-4

Gochin, R. J.; Leklll, M.; Shergold, H. L. Coal Prep. 1985, 2 (May 2012), 19–33. DOI: https://doi.org/10.1080/07349348508905150. DOI: https://doi.org/10.1080/07349348508905150

Mpofu, P.; Addai-Mensah, J.; Ralston, J. J. Colloid Interface Sci. 2004, 271, 145–156. DOI: https://doi.org/10.1016/j.jcis.2003.09.042. DOI: https://doi.org/10.1016/j.jcis.2003.09.042

Huggins, M. L. J. Am. Chem. Soc. 1942, 64, 2716–2718. DOI: https://doi.org/10.1021/ja01263a056. DOI: https://doi.org/10.1021/ja01263a056

Sakai, T. J. Polym. Sci. 1968, 6, 1535–1549. DOI: https://doi.org/10.1002/pol.1968.160060810

Arinaitwe, E.; Pawlik, M. Int. J. Miner. Process. 2013, 124, 50–57. DOI: https://doi.org/10.1016/j.minpro.2013.01.006

Napper, D. H. J. Colloid Interface Sci. 1977, 58, 390–407. DOI: https://doi.org/10.1016/0021-9797(77)90150-3. DOI: https://doi.org/10.1016/0021-9797(77)90150-3

Ma, X.; Pawlik, M. Can. Metall. Q. 2007, 46, 321–327. DOI: https://doi.org/10.1179/cmq.2007.46.3.321. DOI: https://doi.org/10.1179/cmq.2007.46.3.321

Rao, M. V. S. Polymer (Guildf). 1993, 34, 592–596. DOI: https://doi.org/10.1016/0032-3861(93)90555-O. DOI: https://doi.org/10.1016/0032-3861(93)90555-O

Ghimici, L.; Popescu, F. Eur. Polym. J. 1998, 34, 13–16. DOI: https://doi.org/10.1016/S0014-3057(97)00072-4. DOI: https://doi.org/10.1016/S0014-3057(97)00072-4

×

Published

2019-12-12

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...