A Quantum Mechanical Analysis of the Electronic Response of BN Nanocluster to Formaldehyde
DOI:
https://doi.org/10.29356/jmcs.v60i1.68Keywords:
Nanostructures, Surfaces, Ab initio calculations, Electronic structureAbstract
It has been previously demonstrated that the electronic properties of pristine BN nanotubes and graphene-like sheets are not sensitive toward presence of H2CO gas. Here, the adsorption of H2CO on the external surface of B12N12 nano-cage is studied using X3LYP and Minnesota density functional calculations. Three different adsorption behaviors were found including physisorption, chemisorption, and chemical functionalization. Gibbs free energy changes at room temperature and 1 atm pressure is in the range of -0.07 to -2.00 eV (X3LYP). The HOMO-LUMO energy gap of the cluster dramatically decreases after the H2CO chemisorption. Thus, B12N12 nanocluster may be used in gas sensor devices for H2CO detection.
Downloads
References
Mine, Y.; Melander, N.; Richter, D.; Lancaster, D.G.; Petrov, K.P.; Tittel, F.K. Appl. Phys. B. 1997, 65, 771-774. DOI: https://doi.org/10.1007/s003400050344
Dingle, P.; Franklin,P. Ind. Built. Environ. 2002, 11, 111-116. DOI: https://doi.org/10.1159/000064247
Vairavamurthy, A.; Roberts, J.M.; Newman, L. Atmos. Environ. 1992, 26, 1965-1993. DOI: https://doi.org/10.1016/0960-1686(92)90083-W
Beheshtian, J.; Peyghan, A.; Bagheri, Z. Struct. Chem. 2013, 24, 1331-1337
Beheshtian, J.; Peyghan, A.; Noei, M. Sens. Actuators B: Chem. 2013, 181, 829–834 DOI: https://doi.org/10.1016/j.snb.2013.02.086
Noei, M.; Peyghan, A. J. Mol. Model. 2013, 19, 3843-3850 DOI: https://doi.org/10.1007/s00894-013-1922-9
Rastegar, S.; Peyghan, A.; Soleymanabadi, H. Physica E. 2015, 68, 22-27 DOI: https://doi.org/10.1016/j.physe.2014.12.005
Peyghan, A.; Noei, M. J. Mex. Chem. Soc. 2014, 58, 46-51.
Nagarajan, V.; Chandiramouli, R.; Sriram, S.; Gopinath, P. J. Nano-struct Chem. 2014, 4, 1-16. DOI: https://doi.org/10.1007/s40097-014-0087-0
Beheshtian, J.; Peyghan, A.; Bagheri, Z.; Kamfiroozi, M. Struct. Chem. 2012, 23, 1567-1572. DOI: https://doi.org/10.1007/s11224-012-9970-9
Nazari, M.; Ghasemi, N.; Maddah, H.; Motlagh, M. J Nanostruct Chem, 2014, 4, 1-5. DOI: https://doi.org/10.1007/s40097-014-0099-9
Peyghan, A.; Soleymanabadi, H.; Bagheri, Z. J. Mex. Chem. Soc. 2015, 59, 66-72.
Noei, M.; Ebrahimikia, M.; Saghapour, Y.; Khodaverdi, M.; Salari, A.; Ahmadaghaei, N. J. Nanostruct Chem. 2015, 5, 213-217. DOI: https://doi.org/10.1007/s40097-015-0152-3
Talwatkar, S.; Sunatkari, A.; Tamgadge, Y.; Pahurkar, V.; Muley, G. J Nanostruct Chem. 2015, 5, 205-212. DOI: https://doi.org/10.1007/s40097-015-0151-4
Beheshtian, J.; Peyghan, A.; Bagheri, Z. J. Mol. Mod., 2013, 19, 2197-2203. DOI: https://doi.org/10.1007/s00894-012-1751-2
Beheshtian, J.; Peyghan, A.; Bagheri, Z. Struct. Chem. 2013, 24, DOI: https://doi.org/10.1007/s11224-012-0172-2
- 170.
Chopra, N.; Luyken, R.; Cherrey, K.; Crespi, V. Cohen, M. Louie,
S. Zettl, A. Science. 1995, 269, 966-967. DOI: https://doi.org/10.1126/science.269.5226.966
Oku, T.; Kuno, M.; Kitahara, H.; Narita, I. Int. J. Inorg. Mater. 2001, 3, 597-612. DOI: https://doi.org/10.1016/S1466-6049(01)00169-6
Seifert, G.; Fowler, P.; Mitchell, D.; Porezag, D.; Frauenheim, T. Chem. Phys. Lett. 1997, 268, 352-358. DOI: https://doi.org/10.1016/S0009-2614(97)00214-5
Oku, T.; Narita, I.; Nishiwaki, A.; Koi, N. Defec. Diff. Forum. 2004, 226, 113-141. DOI: https://doi.org/10.4028/www.scientific.net/DDF.226-228.113
Jia, J.; Wang, H.; Pei, X.; Wu, H. Appl. Surf. Sci. 2007, 253 4485-4489. DOI: https://doi.org/10.1016/j.apsusc.2006.09.066
Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. J. Mol. Model., 2012, 18, 2653-2658. DOI: https://doi.org/10.1007/s00894-012-1476-2
Saha, M.; Das, S. J Nanostruct Chem, 2014, 4, 1-9.
Goodarzi, Z.; Maghrebi, M.; Zavareh, A.; Mokhtari-Hosseini, B.; Ebrahimi-hoseinzadeh, B.; Zarmi, A.; Barshan-tashnizi, M. J Nanostruct Chem, 2015, 5, 237-242. DOI: https://doi.org/10.1007/s40097-015-0154-1
Mahdavian, L. J Nanostruct Chem. 2012, 3, 1-9. DOI: https://doi.org/10.1186/2193-8865-3-1
Saha, M.; Das, S. J Nanostruct Chem. 2014, 4, 1-9. DOI: https://doi.org/10.1007/s40097-014-0094-1
Li, L.; Feng, D.; Fang, X.; Han, X.; Zhang, Y. J Nanostruct Chem. 2014, 4, 1-8. DOI: https://doi.org/10.1007/s40097-014-0117-y
Peyghan, A.; Noei, M.; Yourdkhani, S. Superlattices Microstruct. 2013, 59, 115–122. DOI: https://doi.org/10.1016/j.spmi.2013.04.005
Tabtimsai, C.; Ruangpornvisuti, V.; Wanno, B. Physica E. 2013, 49, 61-67. DOI: https://doi.org/10.1016/j.physe.2013.01.019
Wang, R.; Zhu, R.; Zhang, D. Chem. Phys. Lett. 2008, 467, 131-135. DOI: https://doi.org/10.1016/j.cplett.2008.11.002
Xu, X.; Goddard, W. PNAS. 2004, 101, 2673-2677. DOI: https://doi.org/10.1073/pnas.0308730100
Rassolov, V.; Ratner, M.; Pople, J.; Redfern, P.; Curtiss, L. J. Com-put. Chem. 2001, 22, 976-984. DOI: https://doi.org/10.1002/jcc.1058.abs
Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363 DOI: https://doi.org/10.1002/jcc.540141112
O’boyle, N.; Tenderholt, A.; Langner, K. J. Comput. Chem. 2008, 29, 839-845. DOI: https://doi.org/10.1002/jcc.20823
Ahmadi, A.; Hadipour, N.; Kamfiroozi, M.; Bagheri, Z. Sens. Ac-tuators B: Chem., 2012, 161, 1025-1029. DOI: https://doi.org/10.1016/j.snb.2011.12.001
Hadipour, N.; Peyghan, A.; Soleymanabadi, H. J. Phys. Chem. C. 2015, 119, 6398-6404. DOI: https://doi.org/10.1021/jp513019z
Zhao, Y.; Truhlar, D. J. Chem. Phys. 2006, 125, 194101-194118. DOI: https://doi.org/10.1063/1.2370993
Zhao, Y.; Truhlar, D. Theor Chem Account. 2006, 120: 215-241. DOI: https://doi.org/10.1007/s00214-007-0310-x
Zhao, Y.; Truhlar, D. J. Phys. Chem. A. 2006, 110, 13126-13130. DOI: https://doi.org/10.1021/jp066479k
Matxain, J.; Eriksson, L.; Mercero, J.; Lopez, X.; Piris, M.; Ugal-de, J.; Poater, J.; Matito, E.; Solá, M. J. Phys. Chem. C. 2007, 111, 13354-13360. DOI: https://doi.org/10.1021/jp073773j
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
