The effect of tamoxifen on the electrochemical behavior of Bi+3/Bi on the glassy carbon electrode and its determination via differential pulse anodic stripping voltammetry

Authors

  • Mehdi Jalali National petrochemical company
  • Zeinab Deris Falahieh Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, P.O.B: 38135-567, Arak, Iran
  • Mohammad Alimoradi Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, P.O.B: 38135-567, Arak, Iran
  • Jalal Albadi Department of Chemistry, Faculty of Science, Shahrekord University, P.O.B: 881863-4141, Shahrekord, Iran
  • Ali Niazi Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, P.O.B: 38135-567, Arak, Iran

DOI:

https://doi.org/10.29356/jmcs.v63i1.689

Keywords:

bismuth film electrode, tamoxifen, glassy carbon electrodes, differential pulse anodic stripping voltammetry, serum and pharmaceutical samples

Abstract

The electrochemical behavior of Bi+3 ions on the surface of a glassy carbon electrode, in acidic media and in the presence of tamoxifen, was investigated. Cyclic voltammetry, chronoamperometry, differential pulse voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy were used to find the probable mechanism contributing to the reduction of the peak height of bismuth oxidation with an increase in the concentration of tamoxifen. The obtained results show a slight interaction between the bismuth species and tamoxifen which co-deposit on the surface of glassy carbon electrode. Therefore, the reduction in the peak height of bismuth oxidation as a function of tamoxifen concentration was used to develop a new differential pulse anodic striping voltammetry method for determination of trace amount of tamoxifen. The effects of experimental parameters on the in situ DPASV of Bi+3 ions in the presence of tamoxifen shown the optimal conditions as: 2 mol L-1 H2SO4 (1% v v-1 MeOH), a deposition potential of -0.5 V, a deposition time of 60 s, and a glassy carbon electrode rotation rate of 300 rpm. The calibration curve was plotted in the range of 0.5 to 6 µg mL-1 and the limits of detection and quantitation were calculated to be 3.1 × 10-5 µg mL-1 and 1.0 × 10-4 µg mL-1, respectively. The mean, RSD, and relative bias for 0.5 µg mL-1 (n=5) were found to be 0.49 µg mL-1, 0.3%, and 2%, respectively. Finally, the proposed method was successfully used for the determination of tamoxifen in serum and pharmaceutical samples.

Downloads

Download data is not yet available.

Author Biographies

Mehdi Jalali, National petrochemical company

Electrochemistry department

Zeinab Deris Falahieh, Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, P.O.B: 38135-567, Arak, Iran

Electrochemistry department

Jalal Albadi, Department of Chemistry, Faculty of Science, Shahrekord University, P.O.B: 881863-4141, Shahrekord, Iran

Department of Chemistry

Ali Niazi, Department of Chemistry, Faculty of Science, Islamic Azad University, Arak Branch, P.O.B: 38135-567, Arak, Iran

Department of Chemistry

References

Naseri, N. G.; Baldock, S. J; Economou, A.; Goddard, N. J.; Fielden, P. R. Anal Bioanal Chem. 2008, 391, 1283-1292. DOI: https://doi.org/10.1007/s00216-008-1948-5

Lu, D.; Wang, J.; Ninivin, C. L.; Mabic, S.; Dimitrakopoulos, T. J Electroanal Chem. 2011, 651, 46-49. DOI: https://doi.org/10.1016/j.jelechem.2010.11.002

Figueiredo-Filho, L. C. S. d.; Santos, V. B. D.; Janegitz, B. C.; Guerreiro, T. B.; Fatibello-Filho. O.; Faria, R. C.; Marcolino-Junior, L. H. Electroanalysis. 2010, 22, 1260-1266. DOI: https://doi.org/10.1002/elan.200900553

Wang, J.; Lu, J. Electrochem Commun. 2000, 2, 390-393. DOI: https://doi.org/10.1016/S1388-2481(00)00045-X

Svancara, I.; Fairouz, M.; Ismail, K.; Metelka, R.; Vytras, K. Sci Pap Univ Pardubice Ser A. 2003, 9, 31-48.

Wang, J.; Lu, J. M.; Ho?evar, S. B.; Farias, P. A. M.; Ogorevc. B. Anal Chem. 2000, 72, 3218-3222. DOI: https://doi.org/10.1021/ac000108x

Guzsvány, V.; Kádár, M.; Papp, Z.; Bjelica. L.; Gaál. F.; Tóth, K. Electroanalysis. 2008, 20, 291-300. DOI: https://doi.org/10.1002/elan.200704057

Campestrini, I.; Braga, O. C. d.; Vieira, I. C.; Spinelli, A. Electrochim Acta. 2010. 55. 4970-4975. DOI: https://doi.org/10.1016/j.electacta.2010.03.105

Luo, L.; Wang, X.; Ding, Y.; Li, Q.; Jia, J.; Deng, D. Anal Methods. 2010, 2, 1095-1100. DOI: https://doi.org/10.1039/c0ay00150c

Ho?evar, S. B.; Ogorevc, B.; Wang. J.; Pihlar. B. Electroanalysis. 2002, 14, 1707-1712. DOI: https://doi.org/10.1002/elan.200290014

Pauliukaite, R.; Metelka, R.; Švancara, I.; Królika, A.; Bobrowski, A.; Vyt?as, K.; Norkus, E.; Kalcher, K. Anal Bioanal Chem. 2002, 374, 1155-1158. DOI: https://doi.org/10.1007/s00216-002-1569-3

Baldo, M. A.; Daniele, S.; Bragato, C. J Phys IV France. 2003, 107, 103-106. DOI: https://doi.org/10.1051/jp4:20030254

Tesarova, E.; Heras, A.; Colina, A.; Ruiz, V.; Švancara, I.; Vyt?as, K.; Lopez-Palacios, J. Anal Chim Acta. 2008, 608, 140-146. DOI: https://doi.org/10.1016/j.aca.2007.12.023

Ho?evar, S. B.; Švancara, I., Vyt?as, K.; Ogorevc, B. Electrochim Acta. 2005, 51, 706-710. DOI: https://doi.org/10.1016/j.electacta.2005.05.023

Falahieh, Z. D.; Jalali, M.; Alimoradi, M. Turk. J Chem. 2017, 41, 826-844. DOI: https://doi.org/10.3906/kim-1612-25

Sastry, C. S. P.; Rao, J. S. V. M. L.; Rao, K. R. Talanta. 1995, 42, 1479-1485. DOI: https://doi.org/10.1016/0039-9140(95)01598-6

Sane, R. T.; Desai, S. V.; Sonawne, K. K.; Nayak, V. G. J Chromatogr A. 1985, 331, 432-436. DOI: https://doi.org/10.1016/0021-9673(85)80052-2

Heath, D. D.; Flatt, S. W.; Wu, A. H. B.; Pruitt, M. A.; Rock, C. L. Br J Biomed Sci. 2014, 71, 33–39. DOI: https://doi.org/10.1080/09674845.2014.11669960

Thang, L. Y.; See, H. H.; Quirino, J. P. Electrophoresis. 2016, 37, 1166-1169. DOI: https://doi.org/10.1002/elps.201600010

Fijalek, Z.; Chodkowski, J.; Warowna, M. J Electroanal Chem. 1987, 226, 129-136. DOI: https://doi.org/10.1016/0022-0728(87)80038-4

Radhapyari, K.; Kotoky, P.; Khan, R. Mater Sci Eng C. 2013, 33, 583–587. DOI: https://doi.org/10.1016/j.msec.2012.09.021

Jalali, M.; Aliakbar, A. Anal Methods. 2013, 5, 6352-6359. DOI: https://doi.org/10.1039/c3ay41264d

Flores, J. R.; Nevado, J. J. B.; Salcedo, A. M. C.; Díaz, M. P. C. Anal Chim Acta. 2004, 512, 287-295. DOI: https://doi.org/10.1016/j.aca.2004.02.048

El-Leithy, E. S.; Abdel-Rashid, R. S. Asian J Pharm Sci. 2016, 11, 318-325. DOI: https://doi.org/10.1016/j.ajps.2016.02.005

Peris-Vicente, J.; Carda-Broch, S.; Esteve-Romero, J. Anal Sci. 2014, 30, 925-930. DOI: https://doi.org/10.2116/analsci.30.925

Santana, D. P. d.; Brage, R. M. C.; Strattmman, R.; Albuquerque, M. M.; Bedor, D. C. G.; Leal, L. B.; Silva, J. A. d. Quím Nova. 2008, 31, 47-52. DOI: https://doi.org/10.1590/S0100-40422008000100010

Kanberoglu, G. S.; Coldur, F.; ?ubuk, O.; Topcu, C.; Caglar, B. Sens Lett. 2016, 14, 59-64. DOI: https://doi.org/10.1166/sl.2016.3568

Wang, J.; Cai, X.; Fernandes, J. R.; Ozsoz, M.; Grant, D. H. Talanta. 1997, 45, 273-278. DOI: https://doi.org/10.1016/S0039-9140(97)00129-X

Jain, R.; Vikas, Radhapyari, K. Drug Test Analysis. 2011, 3, 743-747. DOI: https://doi.org/10.1002/dta.240

×

Published

2019-01-10

Issue

Section

Regular Articles
x

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Loading...