Electrochemical Impedance Characterization of LiMnPO4 Electrodes with Different Additions of MWCNTs in an Aqueous Electrolyte

Authors

  • Jesus Israel Barraza-Fierro Texas A&M
  • Tse-Ming Chu Texas A&M
  • Homero Castaneda-Lopez Texas A&M

DOI:

https://doi.org/10.29356/jmcs.v63i3.627

Keywords:

electrochemical impedance spectroscopy, coverage model, aqueous rechargeable lithium battery, lithium magnesium phosphate, lithium intercalation, oxygen evolution reaction

Abstract

An electrochemical characterization was performed in electrodes with different weight percentages of LiMnPO4 and multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The redox potential of LiMnPO4 cathode is close to the electrolyte decomposition, which provides an ideal scenario to study multiple reactions on a single electrode surface involving parallel steps and species transformation in both solid and liquid state. Different processes were deconvoluted using cyclic voltammetry and electrochemical impedance spectroscopy. In addition, a surface coverage model was employed to theoretically quantify the limiting step of the electrochemical process. The results show the addition of MWCNTs increased the electrical conductivity of the cathode and improved the intercalation process in LiMnPO4. The optimal concentrations of MWCNTs, which enhanced the electrical properties and decreased the water oxidation effect, were 20 and 40 wt.%.

Downloads

Download data is not yet available.

References

Alias, N.; Mohamad, A. A. J. Power Sources 2015, 274 (Supplement C), 237-251. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.009

Wang, G. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52 (15), 4911-4915. DOI: https://doi.org/10.1016/j.electacta.2007.01.051

Broussely, M.; Planchat, J. P.; Rigobert, G.; Virey, D.; Sarre, G. J. Power Sources 1997, 68 (1), 8-12. DOI: https://doi.org/10.1016/S0378-7753(96)02544-X

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788-11827. DOI: https://doi.org/10.1021/cr500232y

Castaneda, H.; Tan, B.; Saunders, J. Electrochim. Acta 2010, 55 (13), 4137-4143. DOI: https://doi.org/10.1016/j.electacta.2010.02.059

Köhler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46 (1), 59-65. DOI: https://doi.org/10.1016/S0013-4686(00)00515-6

Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2 (7), 830-840. DOI: https://doi.org/10.1002/aenm.201200065

Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2 (9), 760-765. DOI: https://doi.org/10.1038/nchem.763

Wainwright, D. D., R. Mat. Tech. 1996, 11, 9-12. DOI: https://doi.org/10.1080/10667857.1996.11752650

Wang, Y.-g.; Luo, J.-y.; Wang, C.-x.; Xia, Y.-y. J. Electrochem. Soc. 2006, 153 (8), A1425-A1431. DOI: https://doi.org/10.1149/1.2203772

Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. J. Power Sources 2012, 216, 222-226. DOI: https://doi.org/10.1016/j.jpowsour.2012.05.063

Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609-1613. DOI: https://doi.org/10.1149/1.1837649

Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269-284. DOI: https://doi.org/10.1039/C0EE00029A

Xu, J.; Dou, S.; Liu, H.; Dai, L. Nano Energy 2013, 2 (4), 439-442. DOI: https://doi.org/10.1016/j.nanoen.2013.05.013

Doan, T. N. L.; Taniguchi, I. J. Power Sources 2011, 196 (3), 1399-1408. DOI: https://doi.org/10.1016/j.jpowsour.2010.08.067

Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. J. Mater. Chem. A 2013, 1 (11), 3518-3539. DOI: https://doi.org/10.1039/c2ta01393b

Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151 (9), A1352-A1356. DOI: https://doi.org/10.1149/1.1773731

Barpanda, P.; Djellab, K.; Recham, N.; Armand, M.; Tarascon, J.-M. J. Mater. Chem. 2011, 21 (27), 10143-10152. DOI: https://doi.org/10.1039/c0jm04423g

Rangappa, D.; Sone, K.; Zhou, Y.; Kudo, T.; Honma, I. J. Mater. Chem. 2011, 21 (39), 15813-15818. DOI: https://doi.org/10.1039/c1jm12208h

Chiu, T.-M.; Barraza-Fierro, J. I.; Castaneda, H. Electrochim. Acta 2017, 253, 93-103. DOI: https://doi.org/10.1016/j.electacta.2017.09.018

Rosas, O.; Saunders, J.; Castaneda, H. Electrochim. Acta 2013, 113, 77-86. DOI: https://doi.org/10.1016/j.electacta.2013.09.029

M. D. Levi, G. Salitra, B. Markovsky, H. Teller,a D. Aurbach, Udo Heider,b and Lilia Heider J. Electrochem. Soc. 1999, 146, 1279-1289.

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. J. Phys. Chem. Lett. 2015, 6 (22), 4653-4672. DOI: https://doi.org/10.1021/acs.jpclett.5b01727

Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. J. Electrochem. Soc. 2010, 157 (1), A75-A81. DOI: https://doi.org/10.1149/1.3258274

Macdonald, D. D. Electrochim. Acta 2006, 51 (8–9), 1376-1388. DOI: https://doi.org/10.1016/j.electacta.2005.02.107

Macdonald, D. D. Electrochim. Acta 1990, 35 (10), 1509-1525. DOI: https://doi.org/10.1016/0013-4686(90)80005-9

Chen, Z.; Wang, L. Y.; Yin, G.; Lin, F.; Wang, C. IEEE Trans. on Energy Convers. 2013, 28 (4), 860-870. DOI: https://doi.org/10.1109/TEC.2013.2280136

Song, J.; Bazant, M. Z. Phys. Rev. Lett. 2018, 120 (11). DOI: https://doi.org/10.1103/PhysRevLett.120.116001

Bai, L.; Conway, B. E. Electrochim. Acta 1993, 38 (14), 1803-1815. DOI: https://doi.org/10.1016/0013-4686(93)80302-G

Epelboin, I.; Keddam, M.; Lestrade, J. C. Faraday Discuss. Chem. Soc. 1973, 56 (0), 264-275. DOI: https://doi.org/10.1039/dc9735600264

Hernandez-Maya, R.; Rosas, O.; Saunders, J.; Castaneda, H. J. Electrochem. Soc. 2015, 162 (4), A687-A696. DOI: https://doi.org/10.1149/2.0561504jes

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. Nat. Meth. 2012, 9 (7), 671-675. DOI: https://doi.org/10.1038/nmeth.2089

Hjelm, A.-K.; Lindbergh, G. Electrochim. Acta 2002, 47 (11), 1747-1759. DOI: https://doi.org/10.1016/S0013-4686(02)00008-7

Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146 (4), 1279-1289. DOI: https://doi.org/10.1149/1.1391759

Barraza-Fierro, J. I.; Campillo-Illanes, B.; Li, X.; Castaneda, H. Metall. Mater. Trans. A 2014, 45 (9), 3981-3994. DOI: https://doi.org/10.1007/s11661-014-2320-3

Ahmad, A. L.; Ideris, N.; Ooi, B. S.; Low, S. C.; Ismail, A. J. Appl. Sci. 2014, 14 (12), 1299-1303. DOI: https://doi.org/10.3923/jas.2014.1299.1303

Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5 (6), A135-A137. DOI: https://doi.org/10.1149/1.1475195

Oh, S.-M.; Oh, S.-W.; Yoon, C.-S.; Scrosati, B.; Amine, K.; Sun, Y.-K. Adv. Funct. Mater. 2010, 20 (19), 3260-3265. DOI: https://doi.org/10.1002/adfm.201000469

Kwon, N.-H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Graetzel, M. Electrochem. Solid-State Lett. 2006, 9 (6), A277-A280. DOI: https://doi.org/10.1149/1.2191432

Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101 (23), 4630-4640. DOI: https://doi.org/10.1021/jp9701909

Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J. J. Power Sources 2014, 253, 27-34. DOI: https://doi.org/10.1016/j.jpowsour.2013.12.037

Huang, J.; Li, Z.; Zhang, J.; Song, S.; Lou, Z.; Wu, N. J. Electrochem. Soc. 2015, 162 (4), A585-A595. DOI: https://doi.org/10.1149/2.0241504jes

Manjunatha, H.; Venkatesha, T. V.; Suresh, G. S. J. Solid-State Electrochem. 2012, 16 (5), 1941-1952. DOI: https://doi.org/10.1007/s10008-011-1593-3

Sinha, N. N.; Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. Int. J. Electrochem. Sci. 2008, 3, 691-710. DOI: https://doi.org/10.1016/S1452-3981(23)15473-3

Taylor, M. L. Technological aspects of corrosion control in metallic systems. The Pennsylvania State University, 2012.

Rammelt, U.; Reinhard, G. Electrochim. Acta 1990, 35 (6), 1045-1049. DOI: https://doi.org/10.1016/0013-4686(90)90040-7

Hasted, J. B.; Ritson, D. M.; Collie, C. H. J. Chem. Phys. 1948, 16 (1), 1-21. DOI: https://doi.org/10.1063/1.1746645

Hu, X.; Cheng, Z.; Li, Y.; Ling, Z. J. Alloys Compd. 2015, 651, 290-293. DOI: https://doi.org/10.1016/j.jallcom.2015.08.104

MWCNTs effects on LiMnPO4 host
× MWCNTs effects on LiMnPO4 host

Published

2019-10-17
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...