Electrochemical Impedance Characterization of LiMnPO4 Electrodes with Different Additions of MWCNTs in an Aqueous Electrolyte
DOI:
https://doi.org/10.29356/jmcs.v63i3.627Keywords:
electrochemical impedance spectroscopy, coverage model, aqueous rechargeable lithium battery, lithium magnesium phosphate, lithium intercalation, oxygen evolution reactionAbstract
An electrochemical characterization was performed in electrodes with different weight percentages of LiMnPO4 and multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The redox potential of LiMnPO4 cathode is close to the electrolyte decomposition, which provides an ideal scenario to study multiple reactions on a single electrode surface involving parallel steps and species transformation in both solid and liquid state. Different processes were deconvoluted using cyclic voltammetry and electrochemical impedance spectroscopy. In addition, a surface coverage model was employed to theoretically quantify the limiting step of the electrochemical process. The results show the addition of MWCNTs increased the electrical conductivity of the cathode and improved the intercalation process in LiMnPO4. The optimal concentrations of MWCNTs, which enhanced the electrical properties and decreased the water oxidation effect, were 20 and 40 wt.%.
Downloads
References
Alias, N.; Mohamad, A. A. J. Power Sources 2015, 274 (Supplement C), 237-251. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.009
Wang, G. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52 (15), 4911-4915. DOI: https://doi.org/10.1016/j.electacta.2007.01.051
Broussely, M.; Planchat, J. P.; Rigobert, G.; Virey, D.; Sarre, G. J. Power Sources 1997, 68 (1), 8-12. DOI: https://doi.org/10.1016/S0378-7753(96)02544-X
Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788-11827. DOI: https://doi.org/10.1021/cr500232y
Castaneda, H.; Tan, B.; Saunders, J. Electrochim. Acta 2010, 55 (13), 4137-4143. DOI: https://doi.org/10.1016/j.electacta.2010.02.059
Köhler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46 (1), 59-65. DOI: https://doi.org/10.1016/S0013-4686(00)00515-6
Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2 (7), 830-840. DOI: https://doi.org/10.1002/aenm.201200065
Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2 (9), 760-765. DOI: https://doi.org/10.1038/nchem.763
Wainwright, D. D., R. Mat. Tech. 1996, 11, 9-12. DOI: https://doi.org/10.1080/10667857.1996.11752650
Wang, Y.-g.; Luo, J.-y.; Wang, C.-x.; Xia, Y.-y. J. Electrochem. Soc. 2006, 153 (8), A1425-A1431. DOI: https://doi.org/10.1149/1.2203772
Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. J. Power Sources 2012, 216, 222-226. DOI: https://doi.org/10.1016/j.jpowsour.2012.05.063
Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609-1613. DOI: https://doi.org/10.1149/1.1837649
Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269-284. DOI: https://doi.org/10.1039/C0EE00029A
Xu, J.; Dou, S.; Liu, H.; Dai, L. Nano Energy 2013, 2 (4), 439-442. DOI: https://doi.org/10.1016/j.nanoen.2013.05.013
Doan, T. N. L.; Taniguchi, I. J. Power Sources 2011, 196 (3), 1399-1408. DOI: https://doi.org/10.1016/j.jpowsour.2010.08.067
Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. J. Mater. Chem. A 2013, 1 (11), 3518-3539. DOI: https://doi.org/10.1039/c2ta01393b
Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151 (9), A1352-A1356. DOI: https://doi.org/10.1149/1.1773731
Barpanda, P.; Djellab, K.; Recham, N.; Armand, M.; Tarascon, J.-M. J. Mater. Chem. 2011, 21 (27), 10143-10152. DOI: https://doi.org/10.1039/c0jm04423g
Rangappa, D.; Sone, K.; Zhou, Y.; Kudo, T.; Honma, I. J. Mater. Chem. 2011, 21 (39), 15813-15818. DOI: https://doi.org/10.1039/c1jm12208h
Chiu, T.-M.; Barraza-Fierro, J. I.; Castaneda, H. Electrochim. Acta 2017, 253, 93-103. DOI: https://doi.org/10.1016/j.electacta.2017.09.018
Rosas, O.; Saunders, J.; Castaneda, H. Electrochim. Acta 2013, 113, 77-86. DOI: https://doi.org/10.1016/j.electacta.2013.09.029
M. D. Levi, G. Salitra, B. Markovsky, H. Teller,a D. Aurbach, Udo Heider,b and Lilia Heider J. Electrochem. Soc. 1999, 146, 1279-1289.
Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. J. Phys. Chem. Lett. 2015, 6 (22), 4653-4672. DOI: https://doi.org/10.1021/acs.jpclett.5b01727
Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. J. Electrochem. Soc. 2010, 157 (1), A75-A81. DOI: https://doi.org/10.1149/1.3258274
Macdonald, D. D. Electrochim. Acta 2006, 51 (8–9), 1376-1388. DOI: https://doi.org/10.1016/j.electacta.2005.02.107
Macdonald, D. D. Electrochim. Acta 1990, 35 (10), 1509-1525. DOI: https://doi.org/10.1016/0013-4686(90)80005-9
Chen, Z.; Wang, L. Y.; Yin, G.; Lin, F.; Wang, C. IEEE Trans. on Energy Convers. 2013, 28 (4), 860-870. DOI: https://doi.org/10.1109/TEC.2013.2280136
Song, J.; Bazant, M. Z. Phys. Rev. Lett. 2018, 120 (11). DOI: https://doi.org/10.1103/PhysRevLett.120.116001
Bai, L.; Conway, B. E. Electrochim. Acta 1993, 38 (14), 1803-1815. DOI: https://doi.org/10.1016/0013-4686(93)80302-G
Epelboin, I.; Keddam, M.; Lestrade, J. C. Faraday Discuss. Chem. Soc. 1973, 56 (0), 264-275. DOI: https://doi.org/10.1039/dc9735600264
Hernandez-Maya, R.; Rosas, O.; Saunders, J.; Castaneda, H. J. Electrochem. Soc. 2015, 162 (4), A687-A696. DOI: https://doi.org/10.1149/2.0561504jes
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. Nat. Meth. 2012, 9 (7), 671-675. DOI: https://doi.org/10.1038/nmeth.2089
Hjelm, A.-K.; Lindbergh, G. Electrochim. Acta 2002, 47 (11), 1747-1759. DOI: https://doi.org/10.1016/S0013-4686(02)00008-7
Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146 (4), 1279-1289. DOI: https://doi.org/10.1149/1.1391759
Barraza-Fierro, J. I.; Campillo-Illanes, B.; Li, X.; Castaneda, H. Metall. Mater. Trans. A 2014, 45 (9), 3981-3994. DOI: https://doi.org/10.1007/s11661-014-2320-3
Ahmad, A. L.; Ideris, N.; Ooi, B. S.; Low, S. C.; Ismail, A. J. Appl. Sci. 2014, 14 (12), 1299-1303. DOI: https://doi.org/10.3923/jas.2014.1299.1303
Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5 (6), A135-A137. DOI: https://doi.org/10.1149/1.1475195
Oh, S.-M.; Oh, S.-W.; Yoon, C.-S.; Scrosati, B.; Amine, K.; Sun, Y.-K. Adv. Funct. Mater. 2010, 20 (19), 3260-3265. DOI: https://doi.org/10.1002/adfm.201000469
Kwon, N.-H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Graetzel, M. Electrochem. Solid-State Lett. 2006, 9 (6), A277-A280. DOI: https://doi.org/10.1149/1.2191432
Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101 (23), 4630-4640. DOI: https://doi.org/10.1021/jp9701909
Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J. J. Power Sources 2014, 253, 27-34. DOI: https://doi.org/10.1016/j.jpowsour.2013.12.037
Huang, J.; Li, Z.; Zhang, J.; Song, S.; Lou, Z.; Wu, N. J. Electrochem. Soc. 2015, 162 (4), A585-A595. DOI: https://doi.org/10.1149/2.0241504jes
Manjunatha, H.; Venkatesha, T. V.; Suresh, G. S. J. Solid-State Electrochem. 2012, 16 (5), 1941-1952. DOI: https://doi.org/10.1007/s10008-011-1593-3
Sinha, N. N.; Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. Int. J. Electrochem. Sci. 2008, 3, 691-710. DOI: https://doi.org/10.1016/S1452-3981(23)15473-3
Taylor, M. L. Technological aspects of corrosion control in metallic systems. The Pennsylvania State University, 2012.
Rammelt, U.; Reinhard, G. Electrochim. Acta 1990, 35 (6), 1045-1049. DOI: https://doi.org/10.1016/0013-4686(90)90040-7
Hasted, J. B.; Ritson, D. M.; Collie, C. H. J. Chem. Phys. 1948, 16 (1), 1-21. DOI: https://doi.org/10.1063/1.1746645
Hu, X.; Cheng, Z.; Li, Y.; Ling, Z. J. Alloys Compd. 2015, 651, 290-293. DOI: https://doi.org/10.1016/j.jallcom.2015.08.104


Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
