Silver Precipitation Using Sodium Dithionite in Cyanide Media
DOI:
https://doi.org/10.29356/jmcs.v56i2.315Keywords:
Silver precipitation, sodium dithionite, sodium cyanide, chemical kinetics, reaction orderAbstract
The nature of the reaction and the main parameters affecting Ag precipitation rate in the system Ag+-CN--S2O42- are studied. From the results obtained, a process of chemical precipitation for Ag recovery is proposed, using an environmentally-friendly reducing reagent (sodium dithionite, Na2S2O4), leaving a residual content of Ag into the permitted environmental levels (-1 Ag). The levels of CN- in liquids wastes are of the order of 0.816 mol L-1, and they can be treated by ozonization processes for inerting cyanide. The results obtained indicate that Ag precipitation is achieved in less than 1 hour, with recoveries close to 99%, at room temperature. Silver precipitation is characterized by an induction period followed by a precipitation period, leaving a metal amount in solution less than 1 mg L-1. The main kinetic parameters studied lead to obtain the following apparent reaction orders: with respect to the initial [S2O42-] was n = 1.675, with respect to [CN-] was -1.24, with respect to [OH-] was ≈0 (between 10-4 and 10-2 mol L-1) and with respect to the initial [Ag+] was 0.524. An activation energy of 77 kJ mol-1 was obtained. Under these conditions, Ag precipitation in the system Ag+-CN--S2O42- is controlled by chemical reaction, characterized by high activation energy, and is independent of the hydrodynamic variables of the system.Downloads
Download data is not yet available.
Downloads
Published
2017-10-12
Issue
Section
Regular Articles
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
