First Report on Cultivated Salvia hispanica in an Arid Climate: UPLC-MS/MS Analysis, Antioxidant, and Enzymatic Activities

Authors

  • Ibtissem Rahmoune Larbi Ben M'Hidi University https://orcid.org/0009-0008-2931-726X
  • Samira Karoune Center for Scientific and Technical Research on Arid Regions
  • Clara Azzam Field Crops Research Institute
  • Somia Saad Center for Scientific and Technical Research on Arid Regions
  • Noui Hendel University of M’sila https://orcid.org/0000-0002-6577-925X
  • Hadji Toka Frères Mentouri University
  • Farid Chebrouk Center for Scientific and Technical Research in Physico-Chemical Analyzes https://orcid.org/0000-0003-2257-9028
  • Thamere Cheriet Université des Frères Mentouri
  • Mohamed SeifAllah Kechebar Center for Scientific and Technical Research on Arid Regions
  • Ouahiba Mizab Center for Scientific and Technical Research on Arid Regions

DOI:

https://doi.org/10.29356/jmcs.v70i1.2485

Keywords:

Salvia hispanica, polyphenols, UPLC-MS/MS, antioxidant activity, α-amylase inhibition

Abstract

Abstract. This study is the first to identify polyphenols and flavonoids in ethanolic extracts of aerial parts of Salvia hispanica cultivated under arid conditions using UPLC–MS analysis. Antioxidant activity was evaluated through DPPH, ABTS, PHE, and FRAP tests, while enzymatic activity was assessed via α-amylase inhibition. The polyphenol and flavonoid contents were highest in the inflorescences, followed by the leaves and stems. The major compounds identified included oleanolic acid, riboflavin, rutin, naringenin, curcumin, caffeic acid, resveratrol, quercetin, epicatechin, and luteolin. The chelating activity of leaf, inflorescences, and stem extracts ranged from 11.97 to 145.86 μg mL-1, while α-amylase inhibitory activity ranged from 7.66 to 21.25 μg mL-1. These findings highlight the pharmacological potential of S. hispanica, particularly its antioxidant and antidiabetic properties. This research enhances scientific understanding of Chia’s aerial parts, supporting the development of plant-based supplements and medicinal applications for health and wellness.

 

Resumen. Este estudio es el primero en identificar polifenoles y flavonoides en extractos etanólicos de las partes aéreas de Salvia hispanica cultivadas en condiciones áridas mediante análisis UPLC-MS. La actividad antioxidante se evaluó mediante pruebas DPPH, ABTS, PHE y FRAP, mientras que la actividad enzimática se evaluó mediante inhibición de la α-amilasa. Los contenidos de polifenoles y flavonoides fueron más altos en las inflorescencias, seguidos de las hojas y los tallos. Los principales compuestos identificados incluyeron ácido oleanólico, riboflavina, rutina, naringenina, curcumina, ácido cafeico, resveratrol, quercetina, epicatequina y luteolina. La actividad quelante de los extractos de hojas, inflorescencias y tallos varió de 11.97 a 145.86 μg mL-1, mientras que la actividad inhibidora de α-amilasa varió de 7.66 a 21.25 μg mL-1. Estos hallazgos resaltan el potencial farmacológico de S. hispanica, en particular sus propiedades antioxidantes y antidiabéticas. Esta investigación profundiza la comprensión científica de las partes aéreas de la chía, impulsando el desarrollo de suplementos vegetales y aplicaciones medicinales para la salud y el bienestar.

Downloads

Download data is not yet available.

Author Biographies

Ibtissem Rahmoune, Larbi Ben M'Hidi University

Functional Ecology and Environmental Research Laboratory

Center for Scientific and Technical Research on Arid Regions

Clara Azzam, Field Crops Research Institute

Agricultural Research Center, Giza, Egypt, Cell Research Department

Noui Hendel, University of M’sila

 Laboratory of Biology: Applications in Health and Environment

Hadji Toka, Frères Mentouri University

Laboratory of the Development and Valorization of Plant Genetic Resources, Department of Biology and Plant Ecology

Thamere Cheriet, Université des Frères Mentouri

Unité de valorisation des ressources naturelles, molécules bioactives et analyse physicochimiques et biologiques (VARENBIOMOL)

References

1. Henry, H. S.; Mittleman, M.; Mc Crohan, P. R., in: Introducción de la chía y lagoma de tragacanto en los Estados Unidos. En: Avances en Cosechas Nuevas. Prensa de la Madera. Portland, Ohio, O. J. Janick y J. E. Simon: 1990, 252–256.

2. Ayerza, R.; Coates, W. Ann. Nutr. Metab. 2007, 51, 27–34. DOI: https://doi.org/10.1159/000100818

3. Baginsky, C.; Arenas, J.; Escobar, H.; Garrido, M.; Valero, N.; Tello, D.; Pizarro, L.; Valenzuela, A.; Morales, L.; Silva, H. Chil. J. Agric. Res. 2016, 76, 255–264. DOI: https://doi.org/10.4067/S0718-58392016000300001

4. Orona-Tamayo, D.; Valverde, M. E.; Paredes-López, O., in: Sustainable Protein Sources; Elsevier: 2017, 265–281. DOI: https://doi.org/10.1016/B978-0-12-802778-3.00017-2

5. Basuny, A. M.; Arafat, S. M.; Hikal, D. M. Food Nutr. Sci. 2021, 12, 479–493. DOI: https://doi.org/10.4236/fns.2021.126037

6. Silva, L. D. A.; Verneque, B. J. F.; Mota, A. P. L.; Duarte, C. K. Food Funct. 2021, 12, 8835–8849. DOI: https://doi.org/10.1039/d1fo01287h

7. Khalid, W.; Arshad, M. S.; Aziz, A.; Rahim, M. A.; Qaisrani, T. B.; Afzal, F.; Ali, A.; Ranjha, M. M. A. N.; Khalid, M. Z.; Anjum, F. M. Food Sci. Nutr. 2023, 11, 3–16. DOI: https://doi.org/10.1002/fsn3.3035

8. Agarwal, A.; Rizwana; Tripathi, A. D.; Kumar, T.; Sharma, K. P.; Patel, S. K. S. Antioxidants. 2023, 12, 1413. DOI: https://doi.org/10.3390/antiox12071413

9. Borneo, R.; Aguirre, A.; León, A. E. J. Am. Diet. Assoc. 2010, 110, 946–949. DOI: https://doi.org/10.1016/j.jada.2010.03.011

10. Das, A. Adv. Biotechnol. Microbiol. 2017, 5, 555661.

11. Ixtaina, V. Y.; Martínez, M. L.; Spotorno, V.; Mateo, C. M.; Maestri, D. M.; Diehl, B. W. K.; Nolasco, S. M.; Tomás, M. C. J. Food Compos. Anal. 2011, 24, 166–174. DOI: https://doi.org/10.1016/j.jfca.2010.08.006

12. Muñoz, L. A.; Cobos, A.; Diaz, O.; Aguilera, J. M. Food Rev. Int. 2013, 29, 394–408. DOI: https://doi.org/10.1080/87559129.2013.818014

13. Toscano, L. T.; da Silva, C. S. O.; Toscano, L. T.; de Almeida, A. E. M.; da Cruz Santos, A.; Silva, A. S. Plant Foods Hum. Nutr. 2014, 69, 392–398. DOI: https://doi.org/10.1007/s11130-014-0452-7

14. Scapin, G.; Schmidt, M. M.; Prestes, R. C.; Rosa. Int. Food Res. J. 2016, 23, 2341–2346.

15. Kechebar, A.; Karoune, S.; Falleh, H.; Belhamra, M.; Rahmoune, C.; Ksouri, R. Courr. Savoir. 2017, 23, 29–38.

16. Vuksan, V.; Jenkins, A. L.; Brissette, C.; Choleva, L.; Jovanovski, E.; Gibbs, A. L.; Bazinet, R. P.; Au-Yeung, F.; Zurbau, A.; Ho, H. V. T.; Duvnjak, L.; Sievenpiper, J. L.; Josse, R. G.; Hanna, A. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 138–146. DOI: https://doi.org/10.1016/j.numecd.2016.11.124

17. Mihafu, F. D.; Kiage, B. N.; Kimang’a, A. N.; Okoth, J. K. Int. J. Biol. Chem. Sci. 2020, 14, 1752–1762. DOI: https://doi.org/10.4314/ijbcs.v14i5.20

18. Tamargo, A.; Martin, D.; Navarro del Hierro, J.; Moreno-Arribas, M. V.; Muñoz, L. A. Food Res. Int. 2020, 137, 109364. DOI: https://doi.org/10.1016/j.foodres.2020.109364

19. Felemban, L. F.; Attar, A. M. A.; Zeid, I. M. A. J. Pharm. Res. Int. 2021, 41, 15–26. https://doi.org/10.9734/jpri/2020/v32i4131040

20. Rabail, R.; Khan, M. R.; Mehwish, H. M.; Rajoka, M. S. R.; Lorenzo, J. M.; Kieliszek, M.; Khalid, A. R.; Shabbir, M. A.; Aadil, R. M. Front. Biosci. 2021, 26, 643–654. DOI: https://doi.org/10.3390/molecules27185907

21. Rahmoune, I.; Karoune, S.; Azzam, C.; Saad, S.; Foughalia, A.; Sarri, M.; Chebrouk, F.; Abidat, H.; Kechebarre, M. S. A. Agr. Acad. J. 2024, 7, 19–33. DOI: https://doi.org/10.32406/v7n5/2024/19-33/agrariacad

22. Elshafie, H. S.; Aliberti, L.; Amato, M.; De Feo, V.; Camele, I. Eur. Food Res. Technol. 2018, 244, 1675–1682. DOI: https://doi.org/10.1007/s00217-018-3080-x

23. Dziadek, K.; Kopeć, A.; Dziadek, M.; Sadowska, U.; Cholewa-Kowalska, K. Molecules. 2022, 27, 1569. DOI: https://doi.org/10.3390/molecules27051569

24. Abdel Ghani AE, Al-Saleem MSM, Abdel-Mageed WM, AbouZeid EM, Mahmoud MY, Abdallah RH. Mdpi. 2023, 12,1062. DOI: https://doi.org/10.3390/plants12051062

25. Motyka, S.; Kusznierewicz, B.; Ekiert, H.; Korona-Głowniak, I.; Szopa, A. Molecules 2023, 28, 2728. DOI: https://doi.org/10.3390/molecules28062728

26. Maturana, G.; Segovia, J.; Olea-Azar, C.; Uribe-Oporto, E.; Espinosa, A.; Zúñiga-López, M. C. Antioxidants. 2023, 12, 1108. DOI: https://doi.org/10.3390/antiox12051108

27. Huang, M.; Xu, H.; Zhou, Q.; Xiao, J.; Su, Y.; Wang, M. Crit. Rev. Food Sci. Nutr. 2024, 15, 1–23. DOI: https://doi.org/10.1080/10408398.2024.2337220

28. Herman, S.; Marco, G.; Cecilia, B.; Alfonso, V.; Luis, M.; Cristián, V.; Sebastián, P.; Sebastián, A. Agric. Water Manag. 2016, 173, 67–75. DOI: https://doi.org/10.1016/j.agwat.2016.04.028

29. Müller, L.; Gnoyke, S.; Popken, A. M.; Böhm, V. LWT. 2010, 43, 992–999. DOI: https://doi.org/10.1016/j.lwt.2010.02.004

30. Topçu, G.; Ay, M.; Bilici, A.; Sarikürkcü, C.; Öztürk, M.; Ulubelen, A. Food Chem. 2007, 103, 816–822. DOI: https://doi.org/10.1016/j.foodchem.2006.09.028

31. Bouchoukh, I.; Hazmoune, T.; Boudelaa, M.; Bensouici, C.; Zellagui, A. Curr. Issues Pharm. Med. Sci. 2019, 32, 160–167.

32. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radic. Biol. Med. 1999, 26, 1231–1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

33. Oyaizu, M. Jpn. J. Nutr. 1986, 44, 307–315.

34. Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Talanta. 2008, 76, 899–905. DOI: https://doi.org/10.1016/j.talanta.2008.04.055

35. Zengin, G.; Sarikurkcu, C.; Aktumsek, A.; Ceylan, R.; Ceylan, O. Ind. Crops Prod. 2014, 53, 244–251. DOI: https://doi.org/10.1016/j.indcrop.2013.12.043

36. Aminu, A.; Idris, H.; Muhammad, A.; Aliyu, B.; Namadina, M.; Abdulkadir, A.; Adetutu, E.; Zango, U.; Abdulkadir, S.; Kutama, R.; et al. Biol. Environ. Sci. J. Trop. 2023, 20, 158–176. DOI: https://doi.org/10.4314/bestj.v20i3.16

37. Hanganu, D.; Olah, N. K.; Pop, C. E.; Vlase, L.; Oniga, I.; Ciocarlan, N.; Matei, A.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Benedec, D. Farmacia. 2019, 67, 801–805. DOI: https://doi.org/10.31925/farmacia.2019.5.8

38. Svydenko, L. Agrobiodivers. Improv. Nutr. Health Life Qual. 2022, 6, 139–148. DOI: https://doi.org/10.15414/ainhlq.2022.0015

39. Nasr, A.; Yosuf, I.; Turki, Z.; Abozeid, A. BMC Plant Biol. 2023, 23. DOI: https://doi.org/10.1186/s12870-023-04341-5

40. Mahdjoub, M. M.; Benzitoune, N.; Maiz, Y.; Aouadi, N. E. H.; Bouhenna, M. M.; Kadri, N. J. Res. Pharm. 2023, 27, 1076–1085. DOI: https://doi.org/10.29228/jrp.400

41. Amato, M.; Caruso, M. C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Eur. Food Res. Technol. 2015, 241, 615–625. DOI: https://doi.org/10.1007/s00217-015-2488-9

42. Ilioara, O.; Laurian, V.; Daniela, H.; Anca, T.; Daniela, B. Hop Med. Plants. 2018, 26, 77–84. DOI: https://doi.org/10.15835/hpm.v26i1-2.13235

43. Luca, S. V.; Skalicka-Woźniak, K.; Mihai, C. T.; Gradinaru, A. C.; Mandici, A.; Ciocarlan, N.; Miron, A.; Aprotosoaie, A. C. Antioxidants. 2023, 12, 1514. DOI: https://doi.org/10.3390/antiox12081514

44. Anah, U.; Offer, S.; Aniekan, S.; Nkechi, J.; Romanus, A.; Olorunfemi, A. Niger. J. Pharm. Appl. Sci. Res. 2024, 13, 65–75. DOI: https://doi.org/10.60787/nijophasr-v13-i1-535

45. Olfat, N.; Ashoori, M.; Saedisomeolia, A. Br. J. Nutr. 2022, 128, 1887–1895. DOI: https://doi.org/10.1017/S0007114521005031

46. Horii, S.; Hiroshi, F.; Takao, M.; Yukihiko, K.; Naoki, A.; Katsuhiko, M. J. Med. Chem. 1986, 29, 1038–1046. DOI: https://doi.org/10.1021/jm00156a023

47. Mutlu, M.; Bingol, Z.; Ozden, E. M.; Köksal, E.; Erturk, A.; Goren, A. C.; Alwasel, S.; Gulcin, İ. Electron J. Biotechnol. 2025, 74, 41–53. DOI: https://doi.org/10.1016/j.ejbt.2024.12.002

48. Banu, S. A.; John, S.; Jane Monica, S. Res. J. Pharm. Technol. 2021, 12, 6289–6294. DOI: https://doi.org/10.52711/0974-360X.2021.01088

49. Javid, H.; Moein, S.; Moein, M. Clin. Phytosci. 2022, 8, 7. DOI: https://doi.org/10.1186/s40816-022-00339-y

50. Mamache, W.; Amira, S.; Ben Souici, C.; Laouer, H.; Benchikh, F. J. Food Biochem. 2020, 44, e13472. DOI: https://doi.org/10.1111/jfbc.13472

51. Papoutsis, K.; Zhang, J.; Bowyer, M. C.; Brunton, N.; Gibney, E. R.; Lyng, J. Food Chem. 2021, 338, 128119. DOI: https://doi.org/10.1016/j.foodchem.2020.128119

52. Visvanathan, R.; Le, D. T.; Dhital, S.; Rali, T.; Davis, R. A.; Williamson, G. J. Med. Chem. 2024, 67, 18753–18763. DOI: https://doi.org/10.1021/acs.jmedchem.4c01042

53. Negahdari, R.; Bohlouli, S.; Sharifi, S.; Maleki, D. S.; Rahbar, S. Y.; Khezri, K.; Jafari, S.; Ahmadian, E.; Gorbani, J. N.; Raeesi, S. Phytother. Res. 2021, 35, 1719–1738. DOI: https://doi.org/10.1002/ptr.6904

54. Saeed, R.; Ahmed, D. Microchem. J. 2024, 9, 1-7. DOI: https://doi.org/10.1016/j.microc.2024.110622.

55. Meigui, H.; Qiao, X.; Yonghong, L.; Mehraj, A.; Jiajia, T.; Qiuhong, L.; Chen, T. Food Biosci. 2024, 61, 104951. DOI: https://doi.org/10.1016/j.fbio.2024.104951

56. Asmaey, M.; Elsoghiar, A.; Shaaban, M. Chem. Afr. 2024, 7, 5123–5148. DOI: https://doi.org/10.1007/s42250-024-01110-1

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.

Loading...