Eggshell Waste Derived Hydroxyapatite-SBS Composites Toward a Sustainable Future in Polymer Recycling
DOI:
https://doi.org/10.29356/jmcs.v70i1.2459Keywords:
Hydroxyapatite, SBS/hydroxyapatite composite, mechanical propertiesAbstract
Abstract. This research evaluated styrene-butadiene-styrene (SBS) composites modified with varying concentrations of hydroxyapatite (HAP) synthesized from eggshells. Hydroxyapatite is a versatile material with diverse applications, including its use as an adsorbent. The study investigated the incorporation of HAP particles into an SBS matrix a melt blending method in a mixing chamber. The composites were analyzed by X-ray diffraction (XRD), optical microscopy, infrared spectroscopy, and mechanical tests. The results indicate that incorporating hydroxyapatite significantly enhances several characteristics of the SBS composites, as evidenced by structural changes observed in XRD, morphological features revealed by optical microscopy, and improvements in mechanical strength and chemical properties according to the infrared analysis performed. The SBS/HAP composites containing synthetic hydroxyapatite derived from eggshells a 120 % improvement in mechanical properties compared to the reference sample, with compatibility between the components observed in the microscopy images.
Resumen. Esta investigación evaluó compuestos de estireno-butadieno-estireno (SBS) modificados con concentraciones variables de hidroxiapatita (HAP) sintetizada a partir de cáscaras de huevo. La hidroxiapatita es un material versátil con diversas aplicaciones, incluyendo su uso como adsorbente. El estudio investigó la incorporación de partículas de HAP en una matriz de SBS mediante un método de mezcla en fundido en una cámara de mezcla. Los compuestos se analizaron mediante difracción de rayos X (DRX), microscopía óptica, espectroscopia infrarroja y ensayos mecánicos. Los resultados indican que la incorporación de hidroxiapatita mejora significativamente varias características de los compuestos de SBS, como lo evidencian los cambios estructurales observados en la DRX, las características morfológicas reveladas por microscopía óptica y las mejoras en la resistencia mecánica y las propiedades químicas según el análisis infrarrojo realizado. Los compuestos de SBS/HAP que contienen hidroxiapatita sintética derivada de cáscaras de huevo mostraron una mejora del 120 % en las propiedades mecánicas en comparación con la muestra de referencia, con compatibilidad entre los componentes observada en las imágenes de microscopía.
Downloads
References
1. Pramono, A.; Sulaiman, F.; Milandia, S.; Milandia, A. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 532, 012004. DOI: https://doi.org/10.1088/1757-899X/532/1/012004
2. Wibowo, C. H.; Ubaidillah, U.; Ariawan, D.; Surojo, E.; Nugroho, K. C.; Sunardi, S. Discover Appl. Sci. 2024, 6, 1–22. DOI: https://doi.org/10.1007/s42452-024-06098-4
3. Laohavisuti, N.; Boonchom, B.; Boonmee, W.; Chaiseeda, K.; Seesanong, S. Sci. Rep. 2021, 11, 15143. DOI: https://doi.org/10.1038/s41598-021-94643-1
4. Sadat-Shojai, M.; Khorasani, M. T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Acta Biomater. 2013, 9, 7591–7621. DOI: https://doi.org/10.1016/j.actbio.2013.04.012
5. Radha, K. V.; Selvi, V. S.; Aarcha, J. Sustain. Chem. Clim. Action. 2025, 6, 100056. DOI: https://doi.org/10.1016/j.scca.2025.100056
6. Khalid Zafeer, M.; Subrahmanya Bhat, K. Sustain. Chem. Clim. Action. 2023, 2, 100014. DOI: https://doi.org/10.1016/j.scca.2023.100014
7. Perera, U. P.; Foo, M. L.; Chew, I. M. L. Sustain. Chem. Clim. Action. 2023, 2, 100011. DOI: https://doi.org/10.1016/j.scca.2022.100011
8. Mondal, S.; Park, S.; Choi, J.; Vu, T. T. H.; Doan, V. H. M.; Vo, T. T.; Lee, B.; Oh, J. Adv. Colloid Interface Sci. 2023, 321, 103013. DOI: https://doi.org/10.1016/j.cis.2023.103013
9. Zaed, I.; Iaccarino, C.; Faedo, F.; Grillini, L.; Galassi, E.; Dotti, A.; Nataloni, A.; Mannella, F. C.; Cardia, A. J. Appl. Biomater. Funct. Mater. 2025, 23. DOI: https://doi.org/10.1177/22808000241311389
10. Firdaus Hussin, M. S.; Abdullah, H. Z.; Idris, M. I.; Abdul Wahap, M. A. Heliyon. 2022, 8, e10356. DOI: https://doi.org/10.1016/j.heliyon.2022.e10356
11. Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Crystals. 2021, 11, 149. DOI: https://doi.org/10.3390/cryst11020149
12. Murshed, M. Cold Spring Harb. Perspect. Med. 2018, 8, a031229. DOI: https://doi.org/10.1101/cshperspect.a031229
13. Pokhrel, S.; Pokhrel, S. Adv. Chem. Eng. Sci. 2018, 8, 225–240. DOI: https://doi.org/10.4236/aces.2018.84016
14. Hendi, A. A. J. Alloys Compd. 2017, 712, 147–151. DOI: https://doi.org/10.1016/j.jallcom.2017.04.021
15. Veluswamy, R.; Balasubramaniam, G.; Natarajan, M.; Krishnaswamy, M.; Chinnappan, B. A.; Nagarajan, S.; Subramanian, B.; Velauthapillai, D. Sustain. Chem. Pharm. 2024, 41, 101653. DOI: https://doi.org/10.1016/j.scp.2024.101653
16. Veremeev, A.; Bolgarin, R.; Nesterenko, V.; Andreev-Andrievskiy, A.; Kutikhin, A. Materials. 2020, 13, 3393. DOI: https://doi.org/10.3390/ma13153393
17. Mondal, B.; Mondal, S.; Mondal, A.; Mandal, N. Mater. Charact. 2016, 121, 112–124. DOI: https://doi.org/10.1016/j.matchar.2016.09.034
18. Gunduz, O.; Kilic, O.; Ekren, N.; Gokce, H.; Kalkandelen, C.; Oktar, F. N. Key Eng. Mater. 2017, 720, 207–209. DOI: https://doi.org/10.4028/www.scientific.net/KEM.720.207
19. Fara, A. N. K. A.; Abdullah, H. Z. AIP Conf. Proc. 2015, 1669. DOI: https://doi.org/10.1063/1.4919215
20. El-Bassyouni, G. T.; Eldera, S. S.; Kenawy, S. H.; Hamzawy, E. M. A. Heliyon. 2020, 6, e04085. DOI: https://doi.org/10.1016/j.heliyon.2020.e04085
21. Suresh Kumar, C.; Dhanaraj, K.; Vimalathithan, R. M.; Ilaiyaraja, P.; Suresh, G. J. Asian Ceram. Soc. 2020, 8, 416–429. DOI: https://doi.org/10.1080/21870764.2020.1749373
22. Mohd Pu’ad, N. A. S.; Koshy, P.; Abdullah, H. Z.; Idris, M. I.; Lee, T. C. Heliyon. 2019, 5, e01588. DOI: https://doi.org/10.1016/j.heliyon.2019.e01588
23. Kardam, S.; Khanam, S. Sustain. Chem. Clim. Action. 2025, 6, 100055. DOI: https://doi.org/10.1016/j.scca.2024.100055
24. Jaswal, A.; Samir, S.; Manna, A. Trans. Indian Inst. Met. 2023, 76, 2221–2230. DOI: https://doi.org/10.1007/s12666-023-02937-x
25. Wu, S.-C.; Hsu, H.-C.; Wang, H.-F.; Liou, S.-P.; Ho, W.-F. Molecules. 2023, 28, 4926. DOI: https://doi.org/10.3390/molecules28134926
26. Kareem, Z.; Eyiler, E. RSC Adv. 2024, 14, 21439–21452. DOI: https://doi.org/10.1039/d4ra02198c.
27. Haider, A.; Haider, S.; Han, S. S.; Kang, I. K. RSC Adv. 2017, 7, 7442–7458. DOI: https://doi.org/10.1039/c6ra26124h
28. Pandele, A. M.; Constantinescu, A.; Radu, I. C.; Miculescu, F.; Voicu, S. I.; Ciocan, L. T. Materials. 2020, 13, 274. DOI: https://doi.org/10.3390/ma13020274
29. Panda, M.; Joshi, S.; Annalakshmi, O.; Venkatraman, B. J. Radioanal. Nucl. Chem. 2024, 334, 807–816. DOI: https://doi.org/10.1007/s10967-024-09806-x
30. Ramesh, N.; Moratti, S. C.; Dias, G. J. J. Biomed. Mater. Res., Part B. 2018, 106, 2046–2057. DOI: https://doi.org/10.1002/jbm.b.33950
31. Li, J.; Wang, S.; Muhammad, Y.; Zhang, H.; Qiao, Q. Constr. Build. Mater. 2022, 345, 128361. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128361
32. Hasan, L. A. Saudi Dent. J. 2021, 33, 1190–1196.DOI: https://doi.org/10.1016/j.sdentj.2021.01.001.
33. Maciejewska, M.; Rybiński, P.; Sowińska-Baranowska, A. Materials. 2024, 17, 3718. DOI: https://doi.org/10.3390/ma17153718
34. Oladipupo, O. F.; Adekola, A. H.; Ofudje, E. A.; Al-Ahmary, K. M.; Al-Mhyawi, S. R.; Alshdoukhi, I. F.; Alrahili, M. R.; Alsaiari, A. A. Heliyon. 2024, 10, e36493. DOI: https://doi.org/10.1016/j.heliyon.2024.e36493
35. Kribaa, O. K.; Latif, S.; Saifi, F.; Chahbaoui, N. Mater. Today Proc. 2022, 49, 1017–1022. DOI: https://doi.org/10.1016/j.matpr.2021.08.120
36. ASTM D412-16, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension; ASTM International: West Conshohocken, PA, 2021. DOI: https://doi.org/10.1520/D0412-16R21
37. Beh, C. Y.; Cheng, E. M.; Mohd Nasir, N. F.; Mohd Tarmizi, E. Z.; Eng, S. K.; Abdul Majid, M. S.; Ridzuan, M. J. M.; Khor, S. F.; Ahmad Saad, F. S. J. Mater. Res. Technol. 2020, 9, 14267–14282. DOI: https://doi.org/10.1016/j.jmrt.2020.10.012
38. Tukulula, M.; Hayeshi, R.; Fonteh, P.; Meyer, D.; Ndamase, A.; Madziva, M. T.; Khumalo, V.; Lubuschagne, P.; Naicker, B.; Swai, H.; Dube, A. Pharm. Res. 2015, 32, 2713–2726. DOI: https://doi.org/10.1007/s11095-015-1655-9
39. Thakur, V. K.; Grewell, D.; Thunga, M.; Kessler, M. R. Macromol. Mater. Eng. 2014, 299, 953–958. DOI: https://doi.org/10.1002/mame.201300368
40. Nihmath, A.; Ramesan, M. T. Polym. Test. 2020, 91, 106837. DOI: https://doi.org/10.1016/j.polymertesting.2020.106837
41. Liu, J.; Min, X.; Zhang, X.; Zhu, X.; Wang, Z.; Wang, T.; Fan, X. R. Soc. Open Sci. 2019, 6, 190536. DOI: https://doi.org/10.1098/rsos.190536
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Beatriz Adriana Salazar‑Cruz, Cynthia Graciela Flores‑Hernández, Alexia Guadalupe Dávila-Quiroz, José Luis Rivera‑Armenta, Edgar Onofre-Bustamante, Juventino López Barroso

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.







